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Abstract

We investigate the 30 year increase in the level and dispersion of house prices across

U.S. metropolitan areas in a calibrated dynamic general equilibrium island model. The

model is based on two main assumptions: households flow in and out metropolitan

areas in response to local wage shocks, and the housing supply cannot adjust instantly

because of regulatory constraints. In our equilibrium, house prices compensate for cross-

sectional wage differences. Feeding in our model the 30 year increase in cross-sectional

wage dispersion that we document based on metropolitan-level data, we generate the

observed increase in house price level and dispersion. The calibration also reveals that,

while a baseline level of regulation is important, a tightening of regulation by itself

cannot account for the increase in house price level and dispersion: in equilibrium,

workers flow out of tightly regulated towards less regulated metropolitan areas, undoing

most of the price impact of additional local supply regulations. Finally, the calibration

with increasing wage dispersion suggests that the welfare effects of housing supply

regulation are large.
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1 Introduction

This paper argues that a calibrated dynamic general equilibrium island model can explain

two important long-run features of cross-sectional U.S. house prices over the last 30 years:

the increase in the level of aggregate house price, and the increase in its dispersion across

regions. The increase in the level is illustrated in the left panel of Figure 1 and the increase in

dispersion, which perhaps has not received as much attention in the literature, is illustrated

in the right panel.1 The coefficient of variation of cross-sectional house prices increased by

0.35 from 1975 to 2004.2

Our explanation combines an increase in the dispersion of wages across metropolitan areas

with fixed quantity constraints on the housing supply. The increase in wage dispersion, on

the one hand, is illustrated in Figure 2. For the same samples of metropolitan areas as in

Figure 1, the coefficient of variation of the real wage per job doubles between 1975 and 2004,

an increase of 0.08. Constraints on the housing supply, on the other hand are mostly due to

regulations such as zoning and permitting laws.3 We show that holding regulation fixed at its

1975 level and feeding in the observed increase in wage dispersion, the model can generate the

observed increases in house price level and dispersion. Several authors have argued that the

tightening of housing supply regulations over time is responsible for the increase in the level

and dispersion of cross-sectional house prices.4 In our calibrated model, however, the price

impact of progressively tightening regulation (while holding wage dispersion fixed) is very

small. This suggests that, although an initial level of housing supply regulation is important,

a tightening in regulation cannot, by itself, account for the observed increases in house price

level and dispersion.

We develop a new model that is designed to study the quantitative impact of wage dis-

persion and housing supply regulations on cross-sectional house prices. It takes as given an

exogenous process for cross-sectional wages, as well as an exogenous distribution of hous-

1Case and Shiller (1987), Himmelberg, Mayer, and Sinai (2005), Gyourko, Mayer, and Sinai (2006),
Campbell, Davis, Gallin, and Martin (2006) and many others document the historical evolution of house
prices at the national and local level.

2The coefficient of variation is the ratio of the standard deviation to the mean, and is therefore a scale
neutral measure of dispersion.

3These can be zoning ordinances, height- and lot-size restrictions and outright quantity restrictions, growth
moratoria, preservation, and state-level development restrictions, land use planning or restrictions on the
development of new towns. See Malpezzi (1996), Quigley and Rosenthal (2005) and Saks (2005).

4E.g., Glaeser and Gyourko (2003, 2005), Glaeser, Gyourko, and Saks (2005, 2007), Quigley and Rosenthal
(2005), and Quigley and Raphael (2005). Davis and Heathcote (2005) and Glaeser, Gyourko, and Saks (2007)
both observe that the non-structure component of house prices, a proxy for the intensity of regulation or the
value of land, has increased substantially. It accounts for about half of the value of the U.S. housing stock,
and it has risen much faster than the structure component since the 1970s.
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Figure 1: House Price Level and Dispersion Among U.S. Metropolitan Areas.

The left panel plots the cross-sectional average house price among U.S. metropolitan areas and the right panel plots the cross-
sectional coefficient of variation of housing prices among the same areas. Both panels refer to a sample of 70 metropolitan areas
for which we have complete house price data going back to 1975. Section 3.2 describes our data set in detail and shows a similar
plot for a larger, but unbalanced panel.
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Figure 2: Wage Dispersion Among U.S. Metropolitan Areas.

The figure plots the cross-sectional coefficient of variation of the real wage per job among U.S. metropolitan areas. The figure
refers to the same sample of 70 metropolitan areas as in Figure 1. Section 3.1.2 describes our data in detail.

1975 1980 1985 1990 1995 2000 2005

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

C.V. of Wage−per−Job

+0.08

ing supply regulations. The equilibrium provides the endogenous joint dynamics of cross-

sectional house prices, construction, and employment. More precisely, we model metropolitan

areas as a collection of geographically separated islands randomly hit by idiosyncratic and

persistent wage (productivity) shocks in the non-housing sector. Construction firms can build

new houses in any metropolitan area, but new construction is irreversible and is subject to

supply regulation, implying that the local housing supply cannot adjust instantly in response

to a local wage shock. We assume that labor is mobile: households can freely move across

metropolitan areas, but they are constrained to live in the same area they work. Equilib-
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rium house prices compensate for wage differentials, to keep households indifferent between

metropolitan areas: households end up living in smaller and more expensive quarters if they

choose to work in a higher-wage metropolitan area. In addition, higher-wage metropolitan

areas have a larger housing stock and a larger workforce.

Our main calibration exercise starts in a steady state with a baseline level of housing

supply regulation, which is chosen to match the 1975 concentration of jobs in the highest

quintile of the metropolitan area wage distribution. We then feed in the observed increase in

the wage dispersion between 1975 and 2004, while keeping housing supply regulation constant.

The increase in wage dispersion creates large flows of workers towards exceptionally high-

wage metropolitan areas, driving local house prices up because of limited housing supply.

Conversely, households flow away from low-wage areas, driving local house prices down.

Taken together, these two effects increase house price dispersion: quantitatively, we find

that the 0.08 increase in the coefficient of variation of wages generates a 0.35 increase in

the coefficient of variation of home values, the magnitude observed in the data. Second,

the same increase in wage dispersion creates an increase in the nationwide house price level

consistent with the data. A marginal increase in the wage in an area is compensated by an

equal increase in housing expenditure, which equals the marginal increase in square-foot rent

multiplied by the typical house size in that area. This implies that the marginal increase

in square-foot rent is inversely proportional to the house size. Hence, the rent increases

by more in high-wage areas, where houses are smaller, than it decreases in low-wage areas,

where houses are larger. This convexity effect increases the nationwide price level. Third,

consistent with the findings in Glaeser, Gyourko, and Saks (2007) and Davis and Heathcote

(2005), there is a large increase in the non-structure component of house prices which can be

measured as the difference between house price and construction cost. Indeed, this difference

represents the shadow value of relaxing regulation: as an island becomes more productive

and attracts more households, the shadow value goes up despite the fact that the number of

permit stays the same. Fourth, our mechanism creates post-1975 job flows from low-wage to

high-wage metropolitan areas, consistent with the data.

We then show that tightening housing supply regulation alone is not sufficient to explain

these facts. Starting from the same 1975 level of supply regulation, we gradually tighten

the limits on constructions over the next thirty years while keeping the dispersion of wages

constant. In order to maximize the impact of supply regulation on prices, we assume that

the tightening is more pronounced in high-wage metropolitan areas. By 2004, the model

does predict an increase in the level and dispersion of cross-sectional house prices, but the

effects are quantitatively small. Indeed, the negative impact of regulation on local housing
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supply is almost completely offset by the equilibrium response of households who decide to

move out of tightly regulated areas towards less regulated areas. Because this shifts the local

demand down at the same time as the supply, the price impact of supply regulations ends

up quantitatively small. This result is robust to the magnitude of the change in regulations,

assumptions on how it is distributed across metropolitan areas and how it evolves over time,

as well as to assumptions on the future path of regulation. Impediments to labor mobility,

which are absent from the model, are likely to slow down this reduction in housing demand,

but they are unlikely to reverse it.

Finally, we evaluate the welfare costs of increasing housing supply regulation, an exercise

suggested by Arnott and MacKinnon (1977) and Glaeser, Gyourko, and Saks (2007). In

our model welfare costs arise from the spatial misallocation of labor: regulation prevents

households from moving towards highly productive metropolitan areas, which reduces aggre-

gate output. The calibration shows that the net welfare cost is potentially large. The precise

quantitative effects depend on whether regulation is tighter in more productive areas, on how

much construction is reduced by the regulation, on whether the increase in wage dispersion

comes about through an increase in idiosyncratic shocks or through an increase in the persis-

tence of the shocks, and on the assumptions about the future path of the wage dispersion. In

our benchmark case, we find that total welfare in 2004 would have been 2% higher without

the increase in regulation. Comparing final steady states makes the flow welfare difference

grow to 3.3%-7.8%, depending on the specification. We also calculate the welfare costs along

the transition path.

Related Literature Our model features productivity differences across regions, which

may capture agglomeration effects (e.g., Glaeser, Scheinkman, and Schleifer (1992, 1995)).

An alternative view in the urban literature is that house price differences reflect differences

in amenities and other local traits (e.g., Roback (1982)). The wage process in our model

admits a broader interpretation that encompasses both productivity and amenities, which

are then reflected into rents and house prices.

Our work is related to Gyourko, Mayer, and Sinai (2006), who also study the relationship

between the U.S. income distribution and cross-sectional house prices. They provide a two-

location model, in which regions differ by housing supply and households differ by income

and preference for a particular location. In equilibrium, households live in the low-supply

location if they either have a strong preference for it or a high income. Our paper differs in

terms of the economic mechanism -households move for productive rather than preference

reasons-, and in terms of methodology. The upside of working with a dynamic and stochastic
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equilibrium model that is amenable to calibration is that it holds the promise of distinguishing

between different mechanisms by looking at their quantitative implications.

Our model of spatial allocation shares many features with labor search models (Lucas

and Prescott (1974), Alvarez and Veracierto, (1999, 2006)) and the spatial allocation model

of Shimer (2005). We complement this literature by focusing on a different friction. In our

setup, households do not incur any cost when moving between islands. Instead, the flow of

households between islands is limited by the supply of housing in each island. Coen-Pirani

(2006) also uses an island model to study migration patterns between US states.

Our work connects to the macroeconomics literature that documents increases in wage

dispersion at the individual level (e.g., Hornstein, Krusell, and Violante (2004)) and studied

its effects on risk-sharing (Krueger and Perri (2006), Storesletten, Telmer, and Yaron (2004),

Heathcote, Storesletten, and Violante (2005), Lustig and Van Nieuwerburgh (2006b)) and on

asset pricing (Constantinides and Duffie (1996), Cogley (2002), Lustig (2003), Storesletten,

Telmer, and Yaron (2006) and Lustig and Van Nieuwerburgh (2006a)). Our model points

to additional welfare costs of rising income inequality in the presence of housing supply

restrictions, associated with the spatial allocation of labor.

Finally, our work is complementary to asset pricing models that focus on the role of hous-

ing as a consumption good and/or a collateral asset (Iacoviello (2005), Piazzesi, Schneider,

and Tuzel (2006), and Lustig and Van Nieuwerburgh (2005, 2006a)). Their main focus is on

the properties of the stochastic discount factor that prices financial assets. In our model, the

discount factor is constant across dates and states. An interesting avenue for future work is

to incorporate the insights from the asset pricing literature. In particular, it seems important

to incorporate richer term structure dynamics and to study their role in determining house

prices in conjunction with the determinants that we put forward.

The rest of the paper is organized as follows. Section 2 presents our island model. Section

3 calibrates a steady-state of the model to match features of 1975 data. Section 4 provides

the quantitative impact on prices and welfare of increasing wage dispersion and regulation.

Section 5 discusses extensions to the model, the related literature, and concludes.

2 An Island Economy

We design an island economy in order to study the quantitative impact of regulation and wage

dispersion on cross-sectional house prices. The model takes regulation and wage dispersion

as exogenous, and provides the endogenous joint dynamics of cross-sectional house prices,

construction, and employment.
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2.1 The Economic Environment

The first paragraph of the setup describes the stochastic environment as well as the technolo-

gies for producing housing and non-housing consumption. The second paragraph describes

households.

2.1.1 Information and Technology

Time is taken to be discrete and runs for ever. The economy is made up of a measure-one

continuum of homogenous metropolitan areas we call islands. At each time t ∈ {1, 2, . . .},
an island’s production function of non-housing consumption good is linear in labor with an

idiosyncratic productivity At ∈ R+.5 Together with competition, our linear specification

means that the the real wage is equal to the productivity At.
6 We take the wage process

{At}∞t=1 to be a first-order Markov chain with a positive and possibly unbounded support

[Amin, Amax] (that is Amin ≥ 0 and Amax ≤ ∞), and with a strictly positive transition density

gt(At+1 |At) over (Amin, Amax). We assume that the wage process is persistent in the sense

that, if A′ > A, then the density gt( · |A′) stochastically dominates the density gt( · |A), in

the first-order sense.7

Each island starts at time zero with some initial wage A0 and housing stock H0 ∈
(0, Hmax). Although we allow the initial housing stock of an island to be correlated with

the initial wage, we assume that, conditional on A0, it does not help predicting the future

path of wage.8 We denote by g0(A0, H0) the initial cross-sectional density of wage and hous-

ing stock, which we take to be strictly positive over (Amin, Amax) × (0, Hmax). At each time

t ∈ {1, 2, . . .}, we index each island by its wage history At ≡ (A0, A2, . . . , At) and by its initial

housing stock H0. We denote by gt(A
t, H0) the unconditional density of history (At, H0). By

the law of large numbers (Sun (2006)) this also represents the density of islands with history

(At, H0).

Each period, firms can purchase construction material in order to construct housing

services in any island. A representative construction firm can transform ∆ units of con-

5Alternatively, one can obtain such a linear specification by assuming that i) an island production function
is F (k,Atn), for some constant return to scale function of capital k and effective units Atn of labor, and ii)
capital is mobile across islands and can also be invested in a technology with constant return R.

6Although a non-linear specification would provide a more general treatment of the mapping between
productivity and wage, our favorite calibration strategy would nevertheless be to pick the productivity dis-
tribution in order to match the wage distribution. Indeed, measures of the real wage per job are readily
available at the metropolitan area level, whereas measures of total factor productivity are not.

7This representation of persistent stochastic process is used, for instance, by Lucas and Prescott (1974).
8Formally, g(At |At−1 . . . , A0,H0) = g(At |At−1, . . . , A0). This will imply that, in an dynamic equilib-

rium, the housing stock does not Granger (1969) cause wage.
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struction material into housing consumption according to the Leontief production function

min{∆, Πt(At)}, where Πt( · ) is some strictly positive bounded function of the current wage

At of the island. This function is designed to represent not only technological and physical

constraints on construction (such as the amount of constructible land) but also regulatory

constraints on construction. Loosely speaking, one can think of Πt(At) as the number of build-

ing permits in an island with current wage At. We assume that construction is irreversible

and the stock of housing consumption depreciates at rate δ ∈ (0, 1). These assumptions are

summarized by the constraints

∆t(A
t, H0) ≥ 0 (1)

∆t(A
t, H0) ≤ Πt(At) (2)

Ht(A
t, H0) = (1− δ)Ht−1(A

t−1, H0) + ∆t(A
t, H0), (3)

where ∆t(A
t, H0) denotes the construction flow and Ht(A

t, H0) denotes the housing stock in

island (At, H0). Inequality (1) is the irreversibility constraint, inequality (2) is imposed by

the Leontief construction technology, and equation (3) is the law of motion for the housing

stock. Lastly, the resource constraint for construction material is

∫
∆t(A

t, H0)gt(A
t, H0) dAt dH0 ≤ M, (4)

where M denotes the per-period endowment of perishable construction material.

2.1.2 Preferences

The economy is populated by a measure one continuum of identical infinitely-lived house-

holds with discount factor β ∈ (0, 1). Households have separable utility for non-durable

consumption and housing services. Their flow utility for non-durable consumption is taken

to be linear, while their flow utility over housing consumption is represented by some strictly

increasing, strictly concave, bounded above and twice continuously differentiable function

v : (0,∞) → R. We assume in addition that v( · ) is unbounded below, meaning that v(h)

goes to minus infinity as h goes to zero. Lastly, and without further loss of generality since

v(h) is bounded above, we assume that v(h) goes to zero as h goes to infinity.9,10

9An iso-elastic utility function v(h) = h1−γ/(1 − γ) satisfies these parametric assumptions when γ > 1.
Lemma 4 of Appendix A.1 shows that these properties imply that the utility function v(h) satisfies Inada
(1963) conditions.

10The key implication of quasi-linearity is that the marginal utility of consumption is equated across
islands and, in that sense, that our ex-ante identical households are fully insured. This result also holds with
a strictly concave and non-separable utility function when, every period, households choose the probabilities
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We assume that, each period, a household supplies inelastically one homogenous unit of

labor in the island of his choosing.11 Letting nt(A
t, H0) be the number of households who

choose to live in island (At, H0), we have

∫
nt(A

t, H0)gt(A
t, H0) dAt dH0 = 1, (5)

since the number of households in the economy must sum to 1.

A key assumption of our model is that households are constrained to live in the same

island they choose to work.12 In other words, housing consumption ht(A
t, H0) per household

in island (At, H0) is subject to the local resource constraint

nt(A
t, H0)ht(A

t, H0) ≤ Ht(A
t, H0). (6)

An allocation is a collection of measurable functions specifying, for each time t ∈ {1, 2, . . .}
and each island (At, H0), the number nt(A

t, H0) of households, the housing consumption

ht(A
t, H0) per household, the flow ∆t(A

t, H0) of construction, and the housing stock Ht(A
t, H0).

An allocation is feasible if it satisfies the constraints (1)-(6).

2.2 Definition of a Competitive Equilibrium

Every period, competitive firms purchase construction material at price µt in order to pro-

duce and sell housing consumption in the islands of their choosing. The price of housing

consumption in island (At, H0) is denoted pt(A
t, H0). Hence, the representative construction

firm problem is to choose quantities ∆t(A
t, H0) of construction material in order to maximize

∫ (
pt(A

t, H0)− µt

)
∆t(A

t, H0)gt(A
t, H0) dAt dH0, (7)

being assigned to each island, housing and non-housing consumption in each island, and trade a full set of
claims conditional on their island assignment, i.e., lotteries along the line of Rogerson (1988), Hansen (1985),
Prescott and Rı́os-Rull (1992), and Rocheteau, Rupert, Shell, and Wright (2006). See also the static setup
of Appendix B.1. Because of full insurance, such a model would remain tractable and only differs from the
present model along one dimension: the equalized marginal utility of consumption would change over time.

11This homogeneity assumption means that the skill (human capital) mix is constant across islands and
across time in the model, in line with Berry and Glaeser (2005) empirical study of skill heterogeneity across
metropolitan areas. They measure skill as the faction of households with a college degree and show that skill
is remarkably evenly spread across metropolitan areas. They also show that the tendency of initially skilled
places to become more skilled has led to only modest increases in heterogeneity in skill across metropolitan
areas. The cross-sectional coefficient of variation in their skill measure even went down from 0.375 in 1970
to 0.323 in 2000. Finally, they argue that the relationship between metropolitan area skill levels and house
prices remains relatively constant over time.

12The Bureau of Economic Analysis uses this criterion to define a metropolitan area.
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subject to (1)-(2).13

We assume that competitive real-estate firms purchase the stock of housing consumption

in all islands and rent it to households.14 The rent in island (At, H0) is denoted by ρt(A
t, H0).

Clearly, a real-estate firm finds it optimal to supply all its housing stock as long as the rent

is strictly positive.

Competition among real-estate firms implies that the current price of housing consump-

tion is equal to the rent plus the present value of the price next period, net of depreciation:

pt(A
t, H0) = ρt(A

t, H0) + β(1− δ)Et

[
pt+1(A

t+1, H0) |At, H0

]
.

Under the transversality condition

lim
T→∞

βT Et

[
pt+T

(
At+T , H0

) |At, H0

]
= 0, (8)

we obtain the Topel and Rosen (1988) result that a house price is equal to the expected

present value of rents net of depreciation

pt(A
t, H0) = Et

[ ∞∑
j=0

βj(1− δ)jρt+j(A
t+j, H0)

∣∣∣∣ At, H0

]
. (9)

Lastly, because of full mobility, the household’s inter-temporal problem can be reduced

to a sequence of static problems: every period, a household chooses in which island to work,

and how much housing to rent in that island. Consider a household who chooses to live in

island (At, H0). His housing consumption must solve

ut(A
t, H0) = At + sup

h≥0

{
v(h)− ρt(A

t, H0)h
}

. (10)

Moreover, the solution of the household optimal location problem is to work and live in any

13The assumption of a centralized market for construction material implies that construction costs are the
same in every island. Although this implication of the model is obviously violated in the data, one might
argue that it is a reasonable approximation for the question at hand. Indeed, very little of the cross-sectional
variation in housing prices appears to be due to variation in construction costs (e.g., Davis and Palumbo
(2006)).

14This assumption is made for expositional simplicity. As it is standard with frictionless housing markets,
the same equilibrium price would arise if households were purchasing their homes instead of renting them.
See Spiegel (2001) for an equilibrium model of house prices and construction with a moral hazard friction.
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island that yields the maximum value

Ut = sup
(At,H0)

ut(A
t, H0) (11)

of moving.15 A competitive equilibrium is a price system and a feasible allocation such that:

i) the price and the rent solve (9), ii) given the price pt(A
t, H0) of housing consumption and

the price µt of construction material, the construction flow ∆t(A
t, H0) solves the construc-

tion firm’s problem, ii) given the rent ρt(A
t, H0), housing consumption ht(A

t, H0) solves the

household’s problem and the allocation of households across islands is individually optimal,

that is

nt(A
t, H0) ≥ 0 if ut(A

t, H0) = Ut (12)

nt(A
t, H0) = 0 otherwise. (13)

Equation (12) says that, in equilibrium, utility must be equalized across populated islands.

2.3 House Price Implications of Labor Mobility

This subsection provides the mechanism through which equilibrium house prices compensate

for cross-sectional wage differences. We show that a one-dollar increase in wage in some

island must increase the rent of the island, and that the increase in rent is larger in a high-

than in a low-wage island. This convexity property is key to the model pricing implications

as it implies that a mean-preserving increase in wage dispersion increases the cross-sectional

average level of rents and house prices.

2.3.1 Housing Consumption, Rent, and Price

First, in an island without population, the demand for rental housing consumption is equal

to zero. Hence, in an equilibrium, a real-estate firm must be indifferent between supplying its

housing stock or not, implying that the rent is ρt(A
t, H0) = 0.16 Plugging this back into (10)

and using the fact that v(h) goes to zero as h goes to infinity, we find that, if an island is not

populated, then ut(A
t, H0) = At ≤ Ut. Now consider a populated island. In that case, the

15The right-hand side of (10) contains all the terms of the full-blown inter-temporal Lagrangian that are
relevant for the choice of time-t housing consumption and island location: the utility v(h) of housing services,
plus the wage At, minus housing expenditure ρt(At, H0)h times the marginal utility of consumption, which
is equal to 1 because of linear utility.

16Note that the local housing supply is strictly positive in every island. Indeed, each island starts with a
strictly positive housing stock, and the depreciation rate δ is strictly positive.
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rent ρt(A
t, H0) must be strictly positive, and (10) has an interior solution characterized by

the first-order condition v′(ht(A
t, H0)) = ρt(A

t, H0). Plugging this back into the indifference

condition (12) shows that

At − w
(
ht(A

t, H0)
)

= Ut, (14)

where w(h) ≡ hv′(h) − v(h) measures the difference between the housing expenditure and

the utility from housing. This immediately implies that ht(A
t, H0) = w−1(At − Ut): housing

consumption in island (At, H0) only depends on its current wage level At, and the maximum

value Ut of moving to some other island. Since w(h) is a decreasing function, it follows that

housing consumption is a decreasing function of the current wage At. This is intuitive: if a

household is indifferent between a high- and a low-wage island, then this household must be

enjoying more housing consumption in the low-wage island.17

Similarly, rents and house prices only depend on the current wage of the island. Indeed,

if an island is populated, then At ≥ Ut and the rent is v′ ◦ w−1(At − Ut). If an island

is not populated then At − Ut ≤ 0, and the rent is equal to zero. In sum, ρt(A
t, H0) =

R (max{At − Ut, 0}), where R(x) ≡ v′ ◦w−1(x) and R(x) is an increasing function such that

R(0) = 0.18 Plugging the rent back into the pricing equation (9) and using the Markov

property shows that

Pt(At) = E

[ ∞∑
j=0

βj(1− δ)jR (max {At+j − Ut+j, 0})
∣∣∣∣At

]
(15)

is a function of the current wage At but does not depend on other idiosyncratic characteristics

of an island. Our assumption that the wage process {At}∞t=0 is persistent also implies that

Pt( · ) is an increasing function of the current wage At. Intuitively, a high wage At not only

implies that the current rent is high but also that future rents will be high on average. These

properties are summarized in the following proposition:

Proposition 1. At each time t ∈ {1, 2, . . .}, housing consumption, the rent, and the price are

only a function of the island’s current wage, At, and do not depend on any other idiosyncratic

characteristic of the island. In addition, housing consumption ht(At) is decreasing, the rent

ρt(At) is increasing, and the price Pt(At) is increasing, with the island’s current wage, At.

17The models of Rappaport (2006b, 2006a) focus on such cross-sectional differences in per capita housing
consumption, or ‘crowdedness’.

18Lemma 4 of Appendix A.1 shows that R(x) is continuous at zero.
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2.3.2 Convexity Effect

The indifference condition (12) has the following key implication:

Proposition 2 (Convexity). At each time t ∈ {1, 2, . . .}, the rent ρt(At) is a convex function

of the island’s current wage.

To prove this result, we rewrite the indifference condition (12) as

At + sup
h≥0

{v(h)− ρt(At)h} = Ut. (16)

Differentiating (16) with respect to At, using the envelope condition, and keeping in mind

that the value Ut of moving is constant in the cross-section, we obtain:

1− ρ′t(At) ht(At) = 0 ⇔ ρ′t(At) = 1/ht(At) (17)

Equation (17) shows that, in order to compensate for a one-dollar increase in wage, the rent

has to increase by an amount ρ′t(At) such that the marginal increase in housing expenditure,

ρ′t(At)ht(At), is also equal to one dollar, holding housing consumption constant. This implies

that the marginal increase in rent must be larger in an island with smaller housing con-

sumption. Since housing consumption ht(At) decreases with wage, this immediately implies

that that the rent is a convex function of the wage. Appendix B.1 shows that this convexity

property holds more generally for any non-separable, concave utility function over c and h.

The house price implications of an increase in wage dispersion follow immediately from the

properties of the equilibrium rent. Consider a (mean-preserving) increase in wage dispersion,

holding the value Ut of moving constant. Because ρ is an increasing function of A, the rent

increases in high-wage islands and decreases in low-wage islands. Hence, the cross-sectional

dispersion of rents increases. Now, convexity means that the rent increases by more in high-

wage islands than it decreases in low-wage islands. This creates two level effects. First, the

cross-sectional average rent goes up. Second, the house price level increases in every island.

To understand this second effect, consider the example of an independent and identically

distributed wage process. That is, every period, the wage in an island is an independent

draw from the cross-sectional distribution. Our pricing equation (15) implies that the price

in an island with current wage A is

P (A) = ρ(A) +
E [ρ(A′)]

1− β(1− δ)
, (18)

where the expectation is taken with respect to the cross-sectional distribution of wage. Con-
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vexity implies that an increase in wage dispersion increases the second term in the price

equation (18).19 In words, the house price increases because households anticipate that the

rent will increase by more when the island draws a high wage than it will decrease when it

draws a low wage.

2.3.3 Outside Option Effect

The previous paragraph analyzed the impact of an increase in wage dispersion on rents,

under the assumption that the value of moving Ut stays constant. This is of course a “par-

tial equilibrium” reasoning as Ut is an endogenous variable. Section 2.4 explains how Ut

is determined in equilibrium, and our calibration illustrates how it depends on exogenous

parameters. The analysis suggests that an increase in wage dispersion increases the value Ut

of moving. The indifference condition then implies that the increase in Ut decreases the rent

because of an outside option effect: indeed, when the value of moving to some other island

goes up, households are able to bid the rent down in their island. Therefore, the outside

option effect works in the opposite direction of the convexity effect. In all of our calibrated

examples, however, the outside option effect is quantitatively small, and the convexity effect

dominates.20

2.3.4 The Impact of Local Housing Supply on House Prices

An important implication of labor mobility that follows from equation (15), is the absence of

a local housing supply effect on house prices.21 Holding current wage At fixed, a reduction in

local housing supply is offset by a simultaneous reduction in local housing demand, resulting

in no price impact. Changing the aggregate distribution of local housing supplies, as in the

calibration of Section 4.2, has an impact on the distribution of house prices through its effect

on the equilibrium values of moving, {Ut+j}∞j=0.
22

2.4 Recursive Characterization of a Competitive Equilibrium

In this section we provide a recursive characterization a competitive equilibrium.

19If the wage process is persistent, then the same effect operates in the long run. Indeed, by ergodicity, the
distribution of the wage T periods ahead converges to the cross-sectional distribution as T goes to infinity.

20See Appendix B.2 for an analytical argument of this dominance based on a second-order approximation.
21See Quigley and Raphael (2005) for time-series evidence on such effect.
22One way to generate local supply effects is to change the model and assume that the production function

of non-housing consumption has decreasing returns to scale. In such a model, keeping wage the same, a
higher housing stock attracts more households and lowers the wage because of decreasing marginal returns.
Because of the indifference condition, a lower wage translates into a lower house price.
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2.4.1 The Distribution of Households

In a populated island, the local housing market clearing condition (6) implies that nt(A
t, H0) =

Ht(A
t, H0)/ht(A

t, H0) = Ht(A
t, H0)/w

−1(At − Ut). In an island which is not populated we

can write nt(A
t, H0) = 0 = Ht(A

t, H0)/w
−1(0), because w−1(x) goes to infinity as x goes to

zero. Letting Φ(x) ≡ 1/w−1(x), this can be written compactly as

nt(A
t, H0) = Ht(A

t, H0)Φ (max {At − Ut, 0}) . (19)

Because there is a measure one of households, the value Ut of moving solves

∫
Ht(A

t, H0)Φ (max {At − Ut, 0}) dAt dH0 = 1. (20)

Together with the distribution Ht(A
t, H0) of housing stocks, a solution Ut of this equation

pins down the distribution nt(A
t, H0) of households.

2.4.2 The Distribution of the Housing Stock

To complete our characterization of an equilibrium, we need to solve for the distribution

Ht(A
t, H0) of housing stocks.23 To that end, we note that the linearity of the construction

firm’s problem implies that an optimal construction plan is simply to build Πt(At) units

of housing consumption in every island such that pt(A
t, H0) > µt. Since we proved that

pt(A
t, H0) only depends on the current wage At and is increasing, it follows that there is

some wage cutoff A∗
t ∈ [Amin, Amax] such that a construction firm builds Πt(At) units of

housing consumption if At ≥ A∗
t , and does not construct otherwise. Plugging this back into

the resource constraint (4) for construction material, we obtain

∫ Amax

A∗t

Πt(At)gt(At) dAt ≤ M, (21)

with an equality if A∗
t > Amin, and where gt(At) denotes the probability density of the current

wage At. In what follows, we make sure that equation (21) holds with equality by assuming

that

∫ Amax

Amin

Πt(At)gt(At) dAt > M. (22)

23Endogenizing construction facilitates the analysis of an increase in housing supply regulation, and allows
us to confront empirical evidence on the ratio of house price to construction cost, a measure of regulation
that received a lot of attention in the literature.
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This means that there is a large supply of constructible land: that is, the amount of housing

that could be built on all constructible land, on the left-hand side of (22), is greater than the

amount of housing that can be built with the available supply M of construction material.

In that case, the construction cutoff A∗
t is greater than Amin at each time. Moreover, at the

cutoff A∗
t , the representative construction firm is indifferent between constructing and not

constructing, implying that

µt = Pt(A
∗
t ), (23)

at each time t ∈ {1, 2, . . .}.

2.4.3 A Recursive Characterization

The above paragraphs show that an equilibrium can be calculated recursively as follows:

1. On solves first for the sequence {A∗
t}∞t=1 of construction cutoffs using (21).

2. Given the construction cutoffs, one solves for the distribution Ht(A
t, H0) of housing

stocks using the first-order stochastic difference equation:

Ht(A
t, H0) = (1− δ)Ht−1(A

t−1, H0) + Πt(At)I{At≥A∗t }. (24)

3. Given the distribution of housing stocks, one solves for the sequence {Ut}∞t=1 of moving

values using (20), and for the distribution nt(A
t, H0) of households using (19).

4. Given the sequence of moving values, one solves for prices using (15) and (23).

In Appendix C we describe in details a computation procedure based on these 4 steps.

The main computational challenge to keep track of the joint, cross-sectional distribution

Ht(A
t, H0) of wage and housing stock. It turns out that all equilibrium objects and population-

weighted moments of interest can be calculated without knowledge of this joint distribution.

Instead, it is sufficient to keep track of one conditional moment: the average housing stock

at time t − 1, given the current wage At of the island. Appendix C shows how to use this

function of At in order to calculate cross-sectional house price moments. One benefit of this

approach is that transitional dynamics can be computed without relying on any lineariza-

tion technique. This turns out to be important for our results, because the price impact of

wage dispersion stems from a non-linear convexity effect. We conclude this section with the

following proposition:
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Proposition 3 (Existence, Uniqueness, and Efficiency). Assume that (22) holds. If Amax =

∞, assume that: i) at each time t ∈ {1, 2, . . .}, for all U ∈ R,
∫∞

Amin
Φ (max{A− U, 0}) gt(A) dA <

∞ and ii) the price function (15) is well defined for any constant sequence of moving values.

Then there exists a unique competitive equilibrium. In addition, the equilibrium allocation is

Pareto optimal, subject to the constraint embedded in the permit function Π(At).

Note that the technical conditions i) and ii) are immediately satisfied when Amax < ∞. In

Appendix B.3, we prove that, under natural stationarity assumption, the economy converges

towards some steady state.

3 Calibration Parameters and Targets

In this section we first calibrate our parameters so that a steady state of the model matches

key moments of the wage and population distribution in 1975. We then present the moments

of the post-1975 house price distribution that we seek to match.

3.1 Calibration Parameters

We first explain our choice of preference and technology parameters.

3.1.1 Preferences

Because we calibrate the model at annual frequency, we follow Cooley and Prescott (1995) in

taking households’ discount factor to be β = .95. Households have iso-elastic utility function

v(h) = κh1−γ/(1−γ) over housing consumption, implying that the price elasticity of housing

demand is equal to −1/γ. Because the micro-level evidence of Hanushek and Quigley (1980)24

suggests an elasticity of about −.5, we set γ = 2. We choose κ to match the median housing

expenditure to income share of 0.12 in 2000 Census data.25

24They exploit a natural experiment, the Housing Demand Allowance Experiment, where a subgroup of
586 low income renters in Phoenix and 799 households in Pittsburgh received rent subsidies ranging from
30-60%, whereas a control group received nothing. They estimate long-run elasticities of -.45 for Phoenix
and -.64 for Pittsburgh, based on estimates of how fast the housing demand adjusts towards an equilibrium
level in the two years of data.

25To that end, we consider the benchmark case in which all islands have the same wage A and the same
housing stock H = M/δ. In the model income is labor income, but in the data it also includes financial income
and government transfers. Therefore, total income is A divided by the labor income share, which is 0.72 in
U.S. data. The housing expenditure, on the other hand, is Hv′(H) = κ/H. Then the housing expenditure
to income share solves .12 = κ/H/(κ/H + A/.72). Rearranging, we obtain κ = H(A/.72)(.12/(1− .12)).
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3.1.2 Wages

Wage per job data are available for 955 U.S. metropolitan and micropolitan areas for 1969-

2004.26 These 955 metropolitan areas account for 95% of all jobs in the U.S. We deflate the

real wage per job by the nationwide Consumer Price Index (all items excluding shelter) with

base 1983 to obtain the real wage per job.27

Wage per job appears very persistent at the local level, and Figure 3 suggests that the

1975 cross-sectional distribution of the log real wage per job is well described by a normal.

These two observations motivate us to assume that each metropolitan area log wage per job,

at ≡ log(At), follows an independent AR(1) with mean µa, persistence ρa, and innovation

variance σ2
εt:

at = (1− ρa)µa + ρaat−1 + σεt εt. (25)

The Law of Large Numbers (Sun (2006)) equates the cross-sectional distribution of log-wage

per job to its time-series counterpart: hence, log wage per job is log-normally distributed

in the cross section, with a mean µa and a variance σ2
at which can be calculated by taking

variance on both sides of (25):

σ2
at = ρ2

aσ
2
at−1 + σ2

εt. (26)

We calibrate the mean µa of log wage to the average real income across metropolitan

areas and time. For each year, we compute the cross-regional median real wage per job

and then average over time. This average wage per job in 1983 dollars is $14,810. We find

that, over the 1975-2004 period, the real wage per job only went up by 0.14% per year.

Hence, a constant mean real wage per job describes the data relatively well. Since our unit

of observation is a household and not a job, we multiply this average by the average number

26The unit of observation is a core-based statistical area (metropolitan statistical area or MSA). Whenever
possible we replace the metropolitan area by its metropolitan divisions (there are eleven such instances).
Whenever we calculate population-weighted moments of the wage distribution, we use the number of jobs
as population weights. The data are from the Regional Economic Information System (REIS) compiled
by the Bureau of Economic Analysis (BEA, Table CA34). Average wage per job in a region is defined
as wage and salary disbursements divided by the total wage and salary employment. Wage and salary
disbursements consists of the monetary remuneration of employees, including the compensation of corporate
officers; commissions, tips, and bonuses; and receipts in kind, or pay-in-kind.

27It may be preferable to deflate wages by a regional price index, but these data are not available at this
level of aggregation. The Bureau of Labor Statistics only provides regional price indices for the 26 largest
metropolitan areas. We exclude shelter from the index because we need to deflate house prices by a price
index that does not contain the housing component, and because we want to treat wages in the same way as
house prices.
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Figure 3: The 1975 Distribution of Log Real Wage Per Job

The figure plots the distribution of the log real wage per job (horizontal axis) across 955 U.S. metropolitan and micropolitan
statistical areas in 1975. The wage-per-job is deflated by the CPI excluding shelter. The bars denote the histogram; the solid
line is the best fitting normal distribution. The outlier on the right is Anchorage, Alaska.
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of jobs per household of 1.25 (Census data). Expressing wages in the model in thousands of

dollars, this gives µa = log(15) + log(1.25).28

In order to choose the persistence parameter ρa, we estimate the AR(1) model for the log

real wage per job (a) by pooled ordinary least squares. We obtain ρa = .99, with a standard

error 0.0008. Consistent with our model in which all metropolitan areas have the same mean

income, our regression allows no fixed effects: we impose the restriction that the regression

intercept is the same for all metropolitan areas. Although a regression with fixed effects may

fit the data better, this would introduce too many free parameters in our model.29,30

Finally, we set the 1975 standard deviation of the innovation in a, σε0, equal to 0.0173.

Together with the other parameters, this value turns out to deliver a 0.0967 value for the

steady-state population-weighted coefficient of variation of the real wage per job in levels

(A), a level equal to the one in the 1975 data (see the 1975 value in Figure 2).31

28Of course, Jensen’s inequality implies that the log of the average wage per job is not the same as the
average of the log wage. In our calibration, however, the discrepancy is quantitatively negligible.

29It is well known that the lack of fixed effects biases the estimate of ρa upwards. Indeed, an estimation
with fixed effects yields a persistence estimate of ρa = .95. From the perspective of our model, a high ρa is
a parsimonious way to capture the persistence that is implicit in the fixed-effect specification.

30The macro-labor literature studying individual instead of regional wage per job data, also documents
an increase in wage dispersion. Because of its focus on risk-sharing, it often decomposes changes in wages
into a permanent and a transitory component. In our model, such a distinction is not important because we
assume that markets are complete.

31Note that this matching exercise is non-trivial because wages are weighted by the endogenous distribution
of households across metropolitan areas.
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3.1.3 Construction Technology

We obtain the housing depreciation rate from the ratio of depreciation at current cost and

the current cost net stock of residential fixed assets from the Fixed Asset Tables provided by

the BEA. After time-averaging this rate between 1969 and 2004, we find that the housing

stock depreciates at a rate of 1.6% per annum (δ = 0.016).

We set the yearly endowment M of construction material so that the steady-state per-

capita housing consumption M/δ matches the average square footage of a single family house

in the U.S. The Census provides annual data on the square foot of floor area in new one-

family houses completed for the U.S. The time-average over the 1975-2004 period is 1,872

square feet.32 Expressing housing services in thousands of square feet, and using δ = 0.016,

this means that M = 0.016× 1.872 = 0.03.

The last object we need to calibrate is the permit function Πt(At) which measures the

maximum amount of construction per period in an island with wage A. We take this function

to be:

Πt(At) = πa

(
At

Amin

)φ

, (27)

where πa is some positive real number and φ could be either positive or negative. For the

initial 1975 steady-state, we set φ = 0, in order to capture that the regulation was not tighter

in some metropolitan areas than in others in the 1970s. (Section 4.2 models the change in

regulation after 1975 by varying φ.) Because the parameter πa determines the distribution

of housing across islands, it indirectly governs the distribution of households across islands.

Indeed, a larger πa allows firms to construct more housing in high-wage areas, which in turns

increases the population in these areas: this observation motivates us to choose πa in order

to match the 1975 concentration of jobs in high-wage metropolitan areas, as follows.33

Each year, we sorts all 955 metropolitan and micropolitan areas into (equal-sized) wage

quintiles and compute the fraction of jobs in each quintile. Figure 4 shows that jobs are

highly concentrated in the high-wage metropolitan areas. In 1975, 64.7% of U.S. jobs were in

the 20% most productive metropolitan areas. By 2004, this fraction had increased to 73.3%.

32More precisely, it provides the number of houses in seven square foot bins. We compute the average
square footage in a given year as the weighted average of the bin midpoints. For simplicity, we abstract from
growth in M over time.

33The strategy of calibrating Π(At) directly to regulation data, instead of relying on its indirect impact
on the population distribution, is no real alternative. While there certainly are indices of housing supply
constraints at the metropolitan level (Malpezzi (1996) and Saks (2005), each constructed by combining several
surveys), these have no time-series dimension. In addition, there is no natural mapping between such ordinal
measures and our quantity constraint Π(At).
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Together with the other parameters, setting πa = .139 allows us to match the 1975 value of

64.7%.

Figure 4: The Distribution of Jobs by Wage Quintile

For each year between 1975 and 2004, we sort the real wage per job of 955 U.S. metropolitan and micropolitan statistical areas
in five wage quintiles. Within each quintile we compute the total number of jobs in that year. We also compute the total number
of jobs in all five quintiles in that year. The figure plots the ratio of these two, the percentage of jobs in each quintile, in 1975
and in 2004.
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3.2 Calibration Targets

We now describes the house price moments that we seek to match: the cross-sectional

population-weighted average and coefficient of variation of house prices post-1975. Figure 5

plots the average, the standard deviation, and the coefficient of variation. All moments are

population-weighted, i.e. weighted by the fraction of jobs in each metropolitan areas. We

construct our time-series of home prices from the 2000 Census values for the median single-

family home value and the Freddie Mac Conventional Mortgage Home Price Index (CMHPI),

a repeat-sale house-price index from 1975 until 2004 (e.g., Case and Shiller (1987)). Home

values are then deflated by the CPI excluding shelter with base 1983. The top row refers to

a smaller sample of 70 metropolitan areas for which the CMHPI has complete house price

data going back to 1975 (balanced panel). This is the same sample as in Figure 1. The

bottom row refers to the largest possible sample, based on all available house price data from

the CMHPI. The sample consists of the same 70 metropolitan areas in 1975 and increases

gradually to 322 metropolitan areas in 1996 as data for more regions become available. From

1996 until 2004, the sample coverage stays constant at 322 metropolitan areas. The Fig-

ure indicates that moments of the house price distribution are similar across samples. In
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addition, non-population-weighted moments (not reported here) are also similar.

Figure 5: First and Second Moments of Home Values in the Data

The top row of the figure plots the population-weighted cross-sectional average, cross-sectional standard deviation, and cross-
sectional coefficient of variation of single-family home values in the data for a balanced panel of 70 metropolitan statistical areas.
The bottom panel reports the same population-weighted moments for an unbalanced panel of regions that grows from 70 to 322
metropolitan statistical areas.
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It turns out that our calibration of the 1975 steady state delivers a cross-sectional average

house price of $66,000, just as in the data. We also compute year-on-year log changes in the

real value of single-family home values, compute the population-weighted average in the

cross-section, and average across-time. In the last 30 years, real home values increased by

1.71% per year on average in the sample of 70 MSAs with complete house price data. For

all 322 MSAs with some house price data, that growth rate is 1.46%.

A basic qualitative prediction of the model is the positive correlation between the wage-

per-job and the home value in the cross-section. The data bear out this correlation; it is 57%

for the 70-region sample and 61% for the 322-region sample on average between 1975 and

2004.

Our calibration below suggest that an increase in wage dispersion goes a long way towards

explaining the low-frequency changes in house-price level and dispersion. We do not attempt,

however, to explain the co-movement of cross-sectional wages and house prices at business

cycle frequencies. In reality, many other factors, such as unemployment and interest rates,

undoubtedly affect house prices, and our model abstracts from variation in these variables.34

34For instance, our model does not explain why house price dispersion peaked in 1991, but wage dispersion
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Likewise, because we keep the interest rate constant, and because of the lack of segmenta-

tion between the ownership and the rental market, our model may not be appropriate to

understand the evolution of price-rent ratios.35

4 Quantitative Results

In this section we change key parameters to mimic the increase in wage dispersion (section

4.1), the increase in regulation (section 4.2), or both at the same time (section 4.4). In

section 4.3, we discuss our model’s implications for labor mobility. We study the economy’s

transition from 1975 until 2004, and ultimately towards the new steady-state. To keep the

exposition concise, we focus on a a small set of price and quantity moments of interest. In

the figures we present below, the red dashed line denotes the initial 1975 steady state; the

green dashed line denotes the final steady state (which, in our calibration, is approached in

much more than 30 years); and the blue solid line denotes the transition from the initial

steady state to the final steady state.

4.1 Increase in Wage Dispersion

In our main calibration exercise, we investigate the effects on an increase in the wage disper-

sion on house prices. We hold regulation fixed at its 1975 level (πa = .139 and φ = 0) and

increase the cross-sectional dispersion of wages A.

More precisely, we match the increase in the population-weighted coefficient of variation

of wages between 1975 and 2004. The right panel of Figure 6 shows that this coefficient of

variation increased from .0967 in 1975 to 0.1772 in 2004, an increase of 0.08.36 We match this

increase as follows: we keep the persistence constant at ρa = .99 and we choose the time path

did not peak at the same time; the reverse is true in 2001 (see Figures 1 and 2). The housing crash of the
early 1990s was most pronounced in the Boston, New York and Los Angeles metropolitan areas. Those areas
saw a pronounced decrease in the number of jobs, but not in the wage-per-job. Most of the rise and fall in
the wage dispersion between 2000 and 2001 is due to Silicon Valley. The real wage per job growth rate in the
San Jose MSA changed from +8% to -7%, while the growth rate in real home values changed from +10% to
-1%.

35Campbell, Davis, Gallin, and Martin (2006) argue that a large fraction of variation in the price-rent
ratio is accounted for by real interest rates and housing risk premia. Based on a money illusion explanation,
Brunnermeier and Julliard (2006) argue that it is mostly variation in the nominal interest rate that explains
the time-variation in the price-rent ratio. In the cross-section, they find evidence that inflation generates
larger effects on house prices in regions with tighter housing supply.

36This panel repeats the left panel of Figure 2, for the small sample of 70 areas. The corresponding increase
is slightly higher for the increasing sample in the right panel of Figure 2 (+0.105) and slightly lower in the
full sample of 955 MSAs (+.074).
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Figure 6: Increasing the Wage Dispersion

The left panel plots the cross-sectional standard deviation of log wage we feed into the model (exogenous). The right panel plots
the equilibrium population-weighted coefficient of variation of the level of wage that is implied by the parameters in scenario B
(endogenous).
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of σεt so that the standard deviation of log wage, σat, increases linearly from 0.123 to 0.220

over 30 periods and stays constant thereafter (left panel of Figure 6).37 The implied path of

σεt looks as follows: it jumps from .0173 in the initial steady state (1975) to .0333 in period

1, then gradually increases to .0486 by period 30 (2004), jumps down to .0311 in period 31

and stays constant thereafter. The right panel shows that the resulting wage dispersion is

assumed to contract after 2004. Hence, this benchmark case is conservative.38

4.1.1 Construction and Population Distribution

When wage dispersion increases, construction firms are eager to construct in the newly pro-

ductive areas. The construction cutoff A∗
t gradually increases between periods 1 and 30, and

stays constant from that point onwards: construction takes place in higher and higher-wage

areas. These high-wage areas see an increase in their housing stock. The value Ut of moving

increases and the population reallocates towards these high-wage metropolitan areas. On

the other hand, low-wage islands have no construction, a declining housing stock (because

of depreciation), and lose population; they may even be vacated (recall that an island is

populated if and only if At ≥ Ut).

37The law of motion (26) suggests that one could also increase σat by increasing persistence. We discuss
this alternative in Appendix B.5.

38Appendix B.5 also discusses the alternative where σεt stays constant after 2004. This leads to a further
increase in the wage dispersion after 2004.
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Figure 7 shows that the population distribution becomes more concentrated in the top of

the wage distribution. The fraction of the population in the highest-wage quintile increases

from 64.6% in the initial steady state (1975) to 65.7% after 30 periods (2004). It decreases

in the other wage quintiles. Even though σat is constant after 2004 and the construction

threshold A∗
t has reached its steady state value, the housing distribution continues to adjust

towards its steady state. The productive metropolitan areas keep growing and in the new

steady state, 75.6% of jobs are in the highest-wage quintile. While a bit too slow, the increase

in concentration is consistent with the data, where we found that 73.3% of the jobs were in

the 20% highest-wage areas in 2004.

Figure 7: Increasing Wage Dispersion: Population Distribution

This figure plots the population distribution by wage quintile. As we did for the data in Figure 4, we now use the model with
an increasing wage dispersion to generate population time-series for each MSA. We sort the MSAs into five equally sized wage
bins and calculate the ratio of the number of people in each quintile to the number of people in the economy (normalized to 1).
The graph shows the distribution in the initial steady state (1975), after 30 years (2004) and in the final steady state.
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4.1.2 House Prices

As shown in sections 2.3.2 and 2.3.3 the increase in wage dispersion has two effects, working

in opposite directions. First, because the rent is a convex function of the wage, an increase

in the dispersion of A increases the expected value of future rents conditional on any current

wage level. This convexity effect increases the house price. Second, for any current wage level

A, Pt(A) decreases because of an outside option effect: because the value of moving Ut goes

up, households are able to bid their rent down.39

39Appendix B.2 uses a second-order approximation in order to show that, when the increase in wage
dispersion is small, the convexity effect dominates. We show here numerically that this result carries over to
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To obtain the price of a single-family house we multiply the square foot price Pt by the

average square foot size of a house (1,872). The result is a value in thousands of real dollars

which can be compared to the data. The left panel of Figure 8 shows that the population-

weighted cross-sectional average house price increases from $66,000 to $110,000 over the first

30 years. This represents a cumulative increase of 50.1% or an annual increase of 1.67%, very

close to the 1.71% increase in the data. Intuitively, households reallocate from low- towards

high-wage areas. This change in demand decreases the price of housing in low-wage areas, and

increases it in high-wage areas. However, convexity implies that the increase is larger than the

decrease, and creates an increase of the average population weighted house price level. This

increase is amplified by a composition effect: indeed, the reallocation of households means

that our population weights also shift towards high-wage areas with higher house prices.

Figure 8: Increasing Wage Dispersion: House Prices - First and Second Moments

The left panel plots the population-weighted cross-sectional mean of the square foot housing price multiplied by 1.875, the
average housing size in the economy. The middle panel plots the corresponding population-weighted standard deviation; and
the right panel plots the coefficient of variation, the ratio of standard deviation to the mean. In all panels, the red dashed line
denotes the initial 1975 steady state. The green dashed line denotes the final steady state which may occur well beyond 2004.
The blue solid line denotes the transition from the initial steady state to the final steady state.
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The model with increased wage dispersion is also able to account for the observed increase

in house price dispersion. The cross-sectional standard deviation increases by 104.4% in the

first 30 years and by 98.1% between steady states (middle panel of Figure 8). The standard

deviation increases from $30,000 to $90,000, while in the data, it increases from $10,000 to

$60,000 (see bottom panel of Figure 5). The result is a coefficient of variation of house prices

our calibration.
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that is too high in 1975 (0.47 compared to 0.17), but which has the same increase as in the

data. Just as in the data, a 0.08 increase in the coefficient of variation of wages translates

into a 0.35 increase in the coefficient of variation of house prices.

4.1.3 House Price to Construction Cost Ratio

A last moment of interest is the ratio of housing price to construction cost (HP/CC). Glaeser,

Gyourko, and Saks (2007) use this measure of the non-structure component of a house as

an indicator of the tightness of regulation. Similarly, Davis and Heathcote (2005) and Davis

and Palumbo (2006) measure the non-structure component of housing, which they label the

value of land. They all show that the non-structure component has increased a lot over time

and in many metropolitan areas.

Our calculations indicate that the increase in wage dispersion increases the simple average

HP/CC ratio by 11% between 1975 and 2004 and by 28% between steady states. The increase

in the ratio has two sources. First, house prices go up. Second, while construction costs go up

initially, they come down to below their initial steady state level. Furthermore, because the

population reallocates towards the high HP/CC metropolitan areas, the population-weighted

average HP/CC ratio increases by much more: 35% until 2004 and 55% until the new steady

state. Note that although the quantity of permits Πt(At) remains constant between 1975 and

2004, the increase in wage dispersion increases the shadow value Pt(At) − µt of increasing

the number of building permits in an area where the current wage is At. In other words,

although constraints remain the same, the increase in wage dispersion makes them bind more

intensely.

In sum, the increasing wage dispersion is quantitatively able to produce the observed

increase in house price level, the observed increase in house price dispersion and to generate

an increase in population concentration. It also produces an increase in the average house

price to construction cost ratio.

4.2 Increase in Regulation

While the previous section fixed the housing supply constraints at their 1975 level, this section

engineers a progressive tightening of housing supply regulation. It holds the wage distrib-

ution fixed at its 1975 level in order to isolate the impact of an increase in regulation, and

evaluate its quantitative merits in accounting for house prices. The tightening of regulation

is accomplished by decreasing φ in equation (27) linearly from a value of 0 in 1975 to -.5 in
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2004 (see Figure 9).40 We assume that φ stays constant afterwards. The negative value for

φ means that regulation is tighter in more productive areas, and the declining value for φ

captures that regulation becomes tighter over time. The combination of the two captures a

faster tightening in more productive areas.

Figure 9: Tightening Housing Supply Regulation

This figure plots the permit function Π(A) = πa (A/Amin)φ. The top line denotes the situation in 1975 when πa = .139 and
φ = 0. The bottom line denotes the situation in 2004 and beyond when πa = .139 and φ = −0.5. In the years between 1975 and
2004, φ decreases linearly from 0 to -0.5, so that the permit function gradually rotates from the top line to the bottom line.
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4.2.1 Construction and Population Distribution

When housing supply regulation becomes tighter, construction firms are more constrained in

how many housing units they can add in high-wage productive metropolitan areas, relative

to the initial steady state. Because housing units depreciate in every period, the result is

not only a decline in construction in high-wage areas, but also a gradual decline in their

housing stock. Note also that, because less construction takes place in high-wage areas,

there must be more construction low-wage areas: the construction threshold A∗
t gradually

declines between periods 1 and 30 (and stays constant from that point onwards). In addition

households reallocate towards these areas, implying a progressive decline in the value Ut of

moving. Its decline means that islands which were not populated in the initial steady state

now become viable (recall that an island is populated if At ≥ Ut). The population spreads

out: the fraction of the population in the highest wage quintile falls from 64.6% in the initial

steady state to 54.9% after 30 periods. It increases in the other wage quintiles. After 2004,

40While a 2004 value of -.5 for φ is our benchmark, we study alternatives in Appendix B.5. In general, we
find little change compared to the benchmark case discussed in the main text.
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the population continues to spread out and reaches 52.3% in the final steady state. This

evolution of the population distribution is at odds with the data.

4.2.2 House Prices

The effect of tighter regulation is to increase unit house prices Pt(At). Indeed, tighter supply

regulation pushes some households towards low-wage areas in equilibrium, and lowers the

value Ut of moving. This outside option effect allows landlords to bid the rent up in every

metropolitan area. Housing prices increase as well, as they reflect the expected present

discounted value of future rents. The convexity effect on house prices is not operative because,

in the present scenario, the dispersion of wages is constant.

The left panel of Figure 10 shows that a tightening of regulation after 1975 increases house

prices, but only by a tiny amount (the axes are the same as in Figure 8). The cumulative

increase over the first 30 years is only 1.85%, which is about 30 times less than in the data.

The same is true for the standard deviation of house prices, shown in the middle panel: it

increases by only 1.2% in the first 30 years (0.1% between steady states). The result in the

model is a coefficient of variation of 0.45 which is pretty much flat over time (right panel).

The intuition for the small impact on price of regulation is simple. While tighter regulation

reduces the supply of houses in high-wage metropolitan areas, the equilibrium response of

labor is to move out, thereby effectively reducing the housing demand in those same areas.

The net effect is a very small increase in price.

Figure 10: Tightening Housing Supply Regulation: House Prices - First and Second Moments
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4.2.3 House Price to Construction Cost Ratio

An increase in regulation does have a substantial effect on the average HP/CC ratio. The

23% increase in the ratio comes from two effects working in the same direction: house prices

go up in every metropolitan area and the construction cost goes down. Indeed, construction

costs are set by the “marginal” metropolitan area in which some construction takes place.

With tighter regulation, less construction takes place in high-wage areas, and the marginal

area with construction has a lower wage (A∗
t falls) and a lower house price (µt = Pt(A

∗
t ) falls).

The increase in the house price to construction cost ratio reflects an increase in the (shadow)

cost Pt(At) − µt of regulation. As permits become scarcer, their value increase because it

becomes more valuable to relax the permit constraint.

4.3 Labor Mobility

In real life, moving costs can limit labor mobility, affecting both the short- and the long-

run impact of increasing wage dispersion. While moving costs might substantially affect

the one-year migration rate, their effect on 30-year rate is certainly much lower. Thus, we

conjecture that building in such cost may slow down the short-run transitional dynamics we

discussed, but not reverse them.41 In order to gain insight into the long-run effect, Appendix

B.4 adds moving costs to a static version of our model, and provides comparative statics with

respect to the dispersion of wages. We show that the convexity effect is mitigated but not

overturned.42

One concern is that because the model allows for frictionless reallocation, it produces

excessive relocation. This turns out not to be the case. We have calculated the migration

rate in the model in the scenario with increasing wage dispersion. The model is generating

too little mobility, compared to the data.43 This may be due to the high persistence of

41One conservative gauge of such low-frequency mobility is the fraction of people residing in the state in
which they were born. In the U.S. 40% of the entire population no longer live in the state in which they were
born (Census 2000).

42We can solve the model by hand, because we assume that all islands have the same housing supply and
that the wage per job can be either high or low. We show that as long as households find it optimal to move
in equilibrium, the average rent remains an increasing function of the wage dispersion.

43More precisely, we have US Census data for the in-migration and out-migration between 1995 and 2000
for each MSA. We have those data for the population at large, as well as for the sub-population of young
(25-39), single, college-educated. This group is interesting because mobility is more likely to be for productive
reasons. We sort regions into wage-per-job bins and compute net migration rates for each bin. Likewise, in
the model, we construct wage-per-job groups in 1995, and compute the net migration in and out each of these
groups over the next five years. When we compare model to data, we find similar patterns: out-migration
from low-wage areas and in-migration into high wage areas. The most productive regions see an in-migration
of about 0.4% in the model and 2% in the data.
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wages. Indeed, consider the equilibrium of a version of our model with constant wages: in

that extreme case, nobody would find it optimal to move despite perfect mobility. In the

extreme case in which wages are very persistent, at each time period only a small fraction of

all households would need to move across islands in order to restore indifference.

4.4 Increase in Regulation and Wage Dispersion: Implications for

Output and Welfare

In the last scenario, we combine the increase in wage dispersion and the increase in regulation.

Quantitatively, the results for population concentration, the average house price level, and

its cross-sectional dispersion are very similar to the scenario without increasing regulation.

Only for the HP/CC ratio do the two changes work in the same direction.44

This section focuses on the implications for aggregate output and welfare instead. Ar-

guably, the world with increasing wage dispersion is the right place to evaluate the welfare

costs of housing regulation.

4.4.1 Output

On the one hand, housing supply restrictions reduce the flow of households towards higher-

wage, high-productivity areas and therefore reduce aggregate output. On the other hand, an

increase in wage dispersion increases the economy’s output because there are now more highly

productive metropolitan areas where the population can be concentrated. In the former

scenario, aggregate output
∫

nt(A
t, H0)Atgt(A

t, H0) dAtdH0 falls by 0.9% during 1975-2004,

and falls an additional 1.7% en route to its new steady-state. In the latter scenario, output

increases by 13.3% until 2004 and an additional 3.5% afterwards. Making both changes at

the same time leads to an output increase of 11.3% between 1975 and both 2004 and the

final steady state.

It is instructive to isolate the effect of tightening housing supply regulation on output.

Conceptually, this is done by comparing an economy where both changes occur at the same

time to an economy where housing regulation stays fixed at its 1975 level. We find that

output in 2004 is 1.9% lower than what it would have been without tightening housing

supply regulation. The output difference between the two economies in the final steady-

state is even 5.5%. We also find that, because the housing stock adjusts slowly over time,

44The HP/CC ratio increases by 71% between 1975 and 2004 and an additional 116% afterwards, much
more than in either of the previous scenarios. This is because both a decline in the number of permits and the
increase in wage dispersion increase the value of relaxing constraint (2). Table 1 in the Appendix summarizes
the results.
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two-thirds of the output losses come after 2004.

4.4.2 Welfare Costs of Housing Supply Restrictions

Total welfare takes into account not only the total output of the economy but also the

disutility from living in a smaller house when working in a higher-wage metropolitan area.

More regulation increases the output loss, but also decreases the welfare loss coming from

smaller (average) per capita housing quantities. Indeed, households who flow toward low-

wage, less-regulated areas end up living in larger quarters. It turns out that the latter

effect is quantitatively small. Flow welfare differences are on the same order as flow output

differences: total welfare in 2004 is 1.9% lower in 2004 than it would have been without the

increase in regulation, and more than 5% lower between steady states.

A second welfare calculation takes the perspective of a household in 1975 and calculates

the compensating variation of a policy that would keep housing regulation at its 1975 level

(see equation (30)). This takes into account the transition dynamics by calculating the log

difference between the inter-temporal social welfare in two economies: the economy with

fixed regulation and the economy with tightening regulation. The difference is 1.06% per

annum when the discounted sum runs to the final steady-states. When the discounted sums

are cut off in 2004, the welfare cost is smaller, equal to 0.33% per annum. We conclude that

the welfare cost of tighter regulation can be large, but because the housing stock takes time

to adjust, the welfare losses are not borne until late in the transition.45

Our model may not fully capture other costs of living in densely populated areas that

could be mitigated by regulation (e.g., congestion externalities). Our welfare calculations

remain meaningful but should be interpreted with caution: they provide a lower bound on

the size of the costs required for the tightening of regulation to improve welfare.

5 Discussion and Conclusion

We have argued that the observed increase in house price level and house price dispersion

across metropolitan areas over the last thirty years in the US can be understood in a simple

model of location choice. Faced with an increase in the wage dispersion across metropolitan

areas, households chose to reallocate towards higher-wage metropolitan areas. This pushes

up house prices in these locations. The observed increase in wage dispersion is sufficient to

generate the observed increase in the house price level and the house price dispersion across

45Appendix B.5 investigates the sensitivity of these results to alternative specifications of regulatory tight-
ening and increasing wage dispersion.
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metropolitan areas. It is also consistent with the increased concentration of the population in

high-wage areas, and with the increase in the average house price to construction cost ratio.

The same thirty years since 1975 also saw a tightening of housing supply regulation. We

have argued that, while a baseline level of regulation is important, a tightening of regulation

by itself cannot account for the increase in housing prices or their cross-sectional dispersion.

This is because the equilibrium response of households is to reallocate away from tightly

regulated areas. Finally, we have considered both frictions at the same time and have found

substantial welfare costs of housing supply regulation in an economy with increasing wage

dispersion.

One extension we plan to undertake is to introduce disutility from living in a densely-

populated or densely-constructed area. Such congestion-related externalities may provide a

rationale for housing supply limitations that are tighter in higher-wage areas, resembling the

exogenous regulations of the present paper. Such normative approach would be complemen-

tary to existing work by Ortalo-Magné and Prat (2005) and Glaeser, Gyourko, and Saks

(2007), who study the political economy of housing supply regulation. The trade-off between

agglomeration effects and congestion costs also has implications for the size distribution of

cities (Rossi-Hansberg and Wright (2006)).

Another extension is to consider heterogeneity within the region. If a household’s income

depended not only on her region of employment, but also on her type of employment (occu-

pation or skill), then the equilibrium will feature heterogeneity within each region in terms

of wages and housing consumption (Ortalo-Magne and Rady (2006)), and areas may attract

a different skill mix. A simple version with two types of workers may provide a useful way

to think about a “reverse causality” effect, where increasing house prices drive up wages.

Consider a setting where households choose whether to work in the local manufacturing or in

the local service sector upon arrival in the region, and assume that services must be produced

locally. An increase in productivity in the manufacturing sector pushes up the housing price

in the region for the reasons described in this paper. A new effect is that the wages of local

service workers will need to go up to keep them indifferent between staying in this region

with higher house prices and moving to a different region.

Finally, future research should focus on quantifying the relative importance of productive

and consumptive motives in location decisions. This can be accomplished in the context of our

model by decomposing the benefit of moving to an island (the At process) into an observable

wage and unobservable amenities component. The evolution of the cross-sectional correlation

between wage and house price data may be useful to shed light on this decomposition.
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A Proofs

A.1 Preliminary Results

The following Lemma compiles technical results which are used in the following subsection.

Lemma 4. Consider some strictly increasing strictly concave, and twice continuously differentiable function
v : (0,∞) → R. Suppose that v(h) goes to minus infinity as h goes to zero, and that v(h) goes to zero as h

goes to infinity. Then

1. The derivative v’(h) goes to infinity as h goes to zero, and goes to zero as h goes to infinity.

2. The function hv′(h) goes to zero as h goes to infinity.

3. The function w(h) ≡ hv′(h) − v(h) is continuous and strictly decreasing, goes to zero as h goes to
infinity, and goes to infinity as h goes to zero.

4. The function Φ(x) = 1/w−1(x) is continuous and strictly increasing. It can be extended by continuity
at zero with Φ(0) = 0. It goes to infinity as x goes to infinity.

5. The function R(x) ≡ v′ ◦w−1(h) is increasing, convex, continuous, goes to zero as x goes to zero and
goes to infinity as x goes to infinity.

6. Consider any density g(A) such that, for all x ∈ R,

G(x) =
∫ Amax

Amin

Φ(max{A− x, 0}) g(A) dA < ∞.

Then, the function G(x) is continuous.

Proof.

1. For any h1 > h2, concavity implies that v′(h2)(h1 − h2) ≥ v(h1) − v(h2). Therefore, v′(h2)h1 ≥
v′(h2)h2+v(h1)−v(h2) ≥ v(h1)−v(h2). Letting h2 go to zero in the inequality implies that v′(h2) goes
to infinity as h2 goes to zero. Second, since v′(h) is positive and decreasing, it has some positive limit v′

as h goes to infinity. Since v(h) is concave, then for all h1 > h2, 0 ≥ v(h1) ≥ v(h2)+v′(h1)(h1−h2) ≥
v(h2) + v′(h1 − h2). Letting h1 go to infinity shows that v′ = 0. Therefore, v′(h) goes to zero as h

goes to infinity.

2. Rearranging the previous inequality implies that

v(h1) + h2v
′(h1)− v(h2) ≥ h1v

′(h1) ≥ 0.

Letting h1 go to infinity shows that −v(h2) ≥ lim suph→∞ hv′(h) ≥ 0 for all h2. Letting h2 go to
infinity shows that hv′(h) also goes to zero as h goes to infinity.

3. Consider the function w(h) ≡ hv′(h)− v(h). The above results show that w(h) goes to zero as h goes
to infinity. Because w′(h) = hv′′(h) < 0, it follows that w(h) ≥ 0. Lastly, since w(h) ≥ −v(h), letting
h go to zero shows that w(h) goes to infinity as h goes to zero.
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4. Previous paragraph implies that the function Φ(x) = 1/w−1(x) is well defined. It is continuous,
increasing, goes to zero as x goes to zero, and to infinity as x goes to infinity. Lastly, consider the
function R(x) is increasing because both v′(x) and w−1(x) are decreasing. Point 1 and 3 of the Lemma
imply that it is goes to zero as x goes to zero, and to infinity as x goes to infinity.

5. In order to prove that R(x) is convex, note that

R′(x) =
v′′ ◦ w−1(x)
w′ ◦ w−1(x)

=
v′′ ◦ w−1(x)

w−1(x)× v′′ ◦ w−1(x)

=
1

w−1(x)
,

where the second line follows from the fact that w′(h) = hv′′(h). Since w−1(x) is decreasing, it follows
that R′(x) is increasing, which establishes convexity.

6. Pick any x ∈ R and some η > 0. Then that, for all y ∈ [x− η, x + η]

|G(x)−G(y)| ≤
∫ α

Amin

∣∣Φ (max{A− x, 0})− Φ(max{A− y, 0})
∣∣g(A) dA

∫ Amax

α

∣∣Φ(max{A− x, 0})− Φ(max{A− y, 0})∣∣g(A) dA

≤
∫ α

Amin

∣∣Φ (max{A− x, 0})− Φ(max{A− y, 0})
∣∣g(A) dA

2
∫ Amax

α

Φ(max{A− x + η, 0}) g(A) dA

where the second inequality follows because Φ(x) is decreasing. Now, because G(x−η) < ∞, it follows
that for all ε > 0 there exists some α > 0 such that the second integral on the right-hand side is less
than ε/2. Since the function Φ (max{z, 0}) is uniformly continuous over the compact [0, α−x+η], there
exists some η′ < η, such that |x−y| < η′ implies that |Φ(max{A− x, 0})−Φ(max{A− y, 0}) | < ε/2.
Plugging this back into the first integral on the right-hand side shows that |x − y| < η′ implies that
|G(x)−G(y)| < ε.

A.2 Proof of Proposition 3

We first prove existence and uniqueness, and then prove the First Welfare Theorem.

A.2.1 Existence and Uniqueness

Because gt(At)Πt(At) > 0 for all A ∈ [Amin, Amax], there exists a unique sequence {A∗t }∞t=1 of construction
cutoffs solving (21). Given this sequence, we can calculate the housing stock Ht(At,H0) in every island at
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each time using equation (3). We can then write equation (20) as Ft(U) = 1, where

Ft(U) ≡
∫

Ht(At,H0)Φ (max{At − U, 0}) gt(At,H0) dAtdH0

In order to show that, at each time, equation (20) has a unique solution, we first establish that there exists
U and U t such that Ft(U) > 1 and Ft(U t) < 1. Let Ht ≡

∫
Ht(At,H0)gt(At, H0) dAt dH0 be the aggregate

housing stock at time t ∈ {1, 2, . . .}. Since all construction material is used every period, integrating both
sides of (3) shows that Ht = (1− δ)Ht−1 + M , which immediately implies that

Ht = (1− δ)tH0 +
(
1− (1− δ)t

) M

δ
> k ≡ min

{
M

δ
, (1− δ)H0 + M

}
> 0,

for all t ∈ {1, 2, . . .}. Now, for U ≤ 0, we have max{A− U, 0} ≥ −U . Since the function Φ(x) is increasing,
we have

Ft(U) =
∫

Ht(At,H0)Φ(max{At − U, 0})gt(At,H0) dAt dH0

≥ Φ(−U)
∫

Ht(At,H0)gt(At,H0) dAt dH0 = Φ(−U)Ht

> k Φ(−U). (28)

Since Φ(x) goes to infinity as x goes to infinity, it follows from (28) that there exists some U > −∞ such
that Ft(U) > 1.

Because H0 has a bounded support and the function Πt( · ) is bounded above, it follows from (3) that there
exists some K > 0 such that Ht(At, H0) ≤ K for all times and islands. Now pick some U ∈ [Amin, Amax):

Ft(U) =
∫

Ht(At,H0)Φ(max{At − U, 0})gt(At,H0) dAt dH0

≤ K

∫ Amax

U

Φ(At − U)gt(At) dAt ≤ K

∫ Amax

U

Φ(At −Amin)gt(At) dAt. (29)

Because
∫ Amax

Amin
Φ(At −Amin) gt(At) dAt < ∞, it follows that the right-hand side of (29) goes to zero as U

goes to Amax. Therefore, there exists some U t such that Ft(U t) < 1. Now, for U < U ′,

|Ft(U)− Ft(U ′)|

=
∫ Amax

Amin

Ht(At,H0)
[
Φ(max{At − U, 0})− Φ(max{At − U ′, 0})]gt(At,H0) dAt dH0

≤ K|G(U)−G(U ′)|,

where the first equality uses the fact that Φ(x) is an increasing function, and G(U) is the continuous function
defined in point (v) of Lemma 4. This inequality clearly implies that Ft(U) is continuous. Therefore an
application of the Intermediate Value Theorem shows that there exists some Ut ∈ (U, U t) such that Ft(Ut) =
1. Uniqueness follows from the fact that Ft( · ) is strictly decreasing whenever Ft(U) > 0. Having shown the
existence of a unique sequence {Ut}∞t=1 of moving values, we find house prices using equation (15), and the
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construction cost using equation (23). Note that Ut ≥ U implies that

0 ≤ R (max{A− Ut, 0}) ≤ R (max{A− U, 0}) .

Together with our assumption that (15) is finite for any constant sequence of utilities, the above inequality
implies that the price Pt(At) is well defined at each time.

A.2.2 First Welfare Theorem

A feasible allocation is said to be Pareto optimal, subject to the regulatory constraints embedded in the
permit function Π(At), if it cannot be Pareto improved by choosing another feasible allocation and making
time-zero consumption transfers. As it is standard with quasi-linear preferences (see Chapter 16 of Mas-Colell,
Whinston, and Green (1995)), it can be shown that any Pareto optimal allocation must maximize

∞∑
t=1

βt−1

∫
nt(At,H0)

(
At + v

(
ht

(
At,H0

)))
gt(At, H0) dAt dH0, (30)

the equally weighted sum of households’ utilities. We now show that the competitive equilibrium allocation
maximizes (30) and is therefore Pareto optimal, subject to the regulatory constraints embedded in the
permit function Πt(At). Our proof follows the standard optimality-verification argument for concave control
problems. Let us denote by n∗t , H∗

t , h∗t , and ∆∗
t the elements of an equilibrium allocation, and let nt, Ht,

ht, and ∆t be the element of any feasible allocation. In what follows, in order to simplify the notations, we
omit the dependence of these functions on the idiosyncratic history (At,H0). We then write, for any T ≥ 1,

T∑
t=1

βt−1

∫
n∗t (At + v (h∗t )) gt dAtdH0 −

T∑
t=1

βt−1

∫
nt (At + v (ht)) gt dAtdH0

=
T∑

t=1

βt−1

∫
(n∗t − nt) (At + v (h∗t )) gt dAtdH0 +

T∑
t=1

βt−1

∫
nt (v (h∗t )− v (ht)) gt dAtdH0

≥
T∑

t=1

βt−1

∫
(n∗t − nt) (At + v (h∗t )) gt dAtdH0 +

T∑
t=1

βt−1

∫
ntv

′ (h∗t ) (h∗t − ht) gt dAtdH0

=
T∑

t=1

βt−1

∫
(n∗t − nt) (At + v (h∗t )− h∗t v

′(h∗t )) gt dAtdH0

+
T∑

t=1

βt−1

∫
v′ (h∗t ) (n∗t h

∗
t − ntht) gt dAtdH0 (31)

where the density gt is implicitly a function of the idiosyncratic history (At,H0). The inequality on the
third line follows from the concavity of the utility function v(h). (Note that it also holds if an island is not
populated and h∗t = ∞: in that case, one lets v(∞) = v′(∞) = 0.) For the next step we first note that
household’s optimality implies that At + v(h∗t )−h∗t v

′(h∗t ) ≤ Ut, with an equality if n∗t > 0. This implies that

(n∗t − nt) (At + v(h∗t )− h∗t v
′(h∗t )) ≥ (n∗t − nt) Ut.
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Integrating both sides of the inequality against the density gt we obtain that

∫
(n∗t − nt) (At + v(h∗t )− h∗t v

′(h∗t )) gt dAtdH0 ≥
∫

(n∗t − nt)Utgt dAtdH0 = 0 (32)

where the last equality follows from the fact that Ut does not depend on the idiosyncratic history (At,H0)
and from the feasibility condition (5). The second thing we note is that

v′(h∗t ) (n∗t h
∗
t − ntht) ≥ ρt (H∗

t −Ht) (33)

because: i) v′(h∗t ) = ρt, ii) ntht ≤ Ht from (6), and iii) in an equilibrium allocation, n∗t h
∗
t = H∗

t whenever
n∗t > 0. Lastly, if n∗t = 0, then inequality (33) also holds because h∗t = ∞ and therefore v′(h∗t ) = 0. Plugging
(32) and (33) into (31), and using equation (9) we find

T∑
t=1

βt−1

∫
n∗t (At + v (h∗t )) gt dAtdH0 −

T∑
t=1

βt−1

∫
nt (At + v (ht)) gt dAtdH0

≥
T∑

t−1

βt−1

∫
ρt (H∗

t −Ht) gt dAtdH0

=
T∑

t=1

βt−1

∫ (
pt − β(1− δ)

∫
pt+1gt+1

(
At+1 |At

)
dAt+1

)
(H∗

t −Ht) gt dAtdH0

=
T∑

t=1

βt−1

∫
pt (H∗

t −Ht) gt dAtdH0 −
T+1∑
t=2

βt−1(1− δ)
∫

pt

(
H∗

t−1 −Ht−1

)
gt dAtdH0

=
∫

p1(H∗
1 −H1)g1dA1dH0 +

T∑
t=2

βt−1

∫
pt

([
H∗

t − (1− δ)H∗
t−1

]− [Ht − (1− δ)Ht−1]
)
gt dAtdH0

−βT (1− δ)
∫

pT+1 (H∗
T −HT ) gT+1 dAT+1dH0

=
T∑

t=1

βt−1

∫
pt (∆∗

t −∆t) gt dAtdH0 − βT (1− δ)
∫

pT+1 (H∗
T −HT ) gT+1 dAT+1dH0 (34)

where the last line follows from equation (3). Now, note that

pt (∆∗
t −∆t) = µt (∆∗

t −∆t) + (pt − µt) (∆∗
t −∆) ≥ µt (∆∗

t −∆t) (35)

where inequality (35) follows from the optimality condition of construction firms. Indeed, if pt > µt, then
∆∗

t = Πt(At) ≥ ∆t from (2). If pt ≥ µt, then ∆∗
t = 0 ≤ ∆t from (1). Noting moreover that µt is independent

of the idiosyncratic history (At,H0), and integrating both side of (35) against gt, we find

∫
pt (∆∗

t −∆t) gt dAtdH0 ≥ µt

∫
(∆∗

t −∆t) gt dAtdH0 ≥ 0 (36)

where the last inequality follows from the construction material resource constraint (4), and from equation
(22) which implies that the construction material resource constraint is binding in an equilibrium. Plugging

41



(36) back into (34), we find

T∑
t=1

βt−1

∫
n∗t (At + v (h∗t )) gt dAtdH0 −

T∑
t=1

βt−1

∫
nt (At + v (ht)) gt dAtdH0

≥ −βT (1− δ)
∫

pT+1 (H∗
T −HT ) gT+1 dAT+1dH0. (37)

Now, as T goes to infinity, the right-hand side of (37) goes to zero. Indeed, the housing stock Ht in an island
is bounded and, by construction of an equilibrium, the price satisfies the transversality condition (8).

B Supplementary Material

This appendix derives additional results, provides natural extensions of the model setup, and studies the
robustness our quantitative results.

B.1 Convexity of the Rent in a General Setting

In this appendix we show that the rent is a convex function of wage, in a static island model where households
have some non-separable, strictly concave utility function over non-housing and housing consumption, u(c, h).
As in the main text, there is a continuum of islands with wage A and initial housing supply H0. The cross-
sectional probability density of wage and housing stocks is denoted by g(A, H0). A household chooses on
which island to live and work. We adopt the standard lottery assumption that a household chooses the
probability density with which it wants to be assigned to island (A,H0) (Hansen (1985), Rogerson (1988),
Prescott and Rı́os-Rull (1992)), chooses its non-housing and housing consumption in that island, and can
simultaneously trade securities that pay contingent on his final location. The equilibrium price of one unit of
good contingent on being allocated to some island is equal to the probability of being assigned to that island.
Hence, a household chooses measurable functions c(A,H0), h(A,H0), and n(A,H0), in order to maximize:

∫
u(c(A,H0), h(A,H0))n(A,H0)g(A,H0) dA dH0 (38)

subject to the budget constraint

∫
n(A, H0) (c(A,H0) + ρ(A,H0)h(A,H0)−A) dA dH0 ≤ B, (39)

where ρ(A,H0) is the rent in island (A, H0), and B is the budget of the household. In addition, the probability
of being assigned to some island must be equal to one, that is

∫
n(A, H0)g(A,H0) dAdH0 = 1. (40)
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Denoting by λ the multiplier on the budget constraint (39), and by ν the multiplier on constraint (40), the
first-order necessary conditions of the household’s problem are

uc(c(A,H0), h(A, H0)) = λ (41)

uh(c(A,H0), h(A,H0)) = λρ(A,H0) (42)

u(c(A,H0), h(A,H0))− λ [c(A,H0) + ρ(A,H0)h(A,H0)−A] ≤ ν, (43)

with an equality if n(A,H0) > 0, and where uc and uh denote the partial derivative of u with respect to c

and h, respectively. Substituting (42) into (43), we find that, in any populated island,

u(c(A,H0), h(A,H0))− λ

[
c(A,H0) +

uh(c(A,H0), h(A,H0))
λ

h(A,H0)−A

]
= ν, (44)

which, together with (41), implies that non-housing consumption, housing consumption, and hence the rent,
only depend on the current wage of the island. Letting u(A) ≡ u(c(A), h(A)), and defining the expenditure
function e(u, ρ) ≡ c(A,H0) + ρ(A, H0)h(A,H0), we can thus rewrite the indifference condition

u(A)− λe(u(A), ρ(A)) + λA = ν,

Taking derivative with respect to A, one finds that

u′(A)− λeu(u(A), ρ(A))u′(A) + eρ(u(A), ρ(A))ρ′(A) + λ = 0.

Now, the partial derivative of the expenditure function are well known to be ∂e/∂u = 1/uc(c(A), ρ(A)) = 1/λ

and ∂e/∂ρ = h(A). Plugging these back into the above equation and rearranging, we obtain

ρ′(A) =
1

h(A)
.

This implies that the rent is increasing. It also implies that the rent is convex because housing consumption
h(A) decreases with wage. To establish this last property, consider the system of first-order conditions

uc(c(A), h(A)) = λ (45)

u(c(A), h(A))− λ

[
c(A) +

uh(c(A), h(A))
λ

h(A)−A

]
= ν. (46)

A straightforward application of the Implicit Function Theorem shows that

h′(A) =
λucc(c(A), h(A))

h(A) [ucc(c(A), h(A))uhh(c(A), h(A))− uch(c(A), h(A))2]
< 0 (47)

The denominator is positive because uccuhh − u2
ch is the determinant of the Hessian of u, a concave function

of an even number of variables. The numerator is negative because u(c, h) is concave. This proofs that the
rent is convex in A.

As an aside, the above calculation does not apply to the quasi-linear utility function of the paper. In
that case, both the denominator and the numerator are equal to zero.
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B.2 The House Price Impact of Wage Dispersion

This appendix studies the model’s main relationship, the impact of an increase in wage dispersion on housing
prices, in closed form. While it relies on an approximation that applies to a small increase in wage dispersion,
it has the same qualitative features as our calibration exercise. For simplicity, we now assume that the utility
function over housing services is v(h) ≡ −κ/h, the same iso-elastic specification as in our calibration.

B.2.1 House Price Distribution without Wage Dispersion

We first analyze the benchmark situation without wage dispersion: in every island, the wage is equal to A

and the housing stock is equal to H = M/δ. In equilibrium, housing consumption per capita is equal to H

and the unit price of housing services is equal to their marginal utility κ/H
2
. Note that the level of wage

has no impact on house prices. Lastly, the value of moving is U = A− 2κ/H, so that A− U > 0.

B.2.2 House Price Distribution with Wage Dispersion

We now introduce a small amount of wage dispersion. The wage of a randomly chosen island is A = A + dÃ,
where the increment dÃ is small, has a cross-sectional mean of zero and a cross-sectional variance V (dÃ). The
tilde ( ˜ ) notation highlights that dÃ is random in the cross section. The housing stock of a randomly chosen
island is H = H + dH̃, and we assume that dH̃ is of the same order of magnitude as dÃ. In equilibrium,
dH̃ and dÃ are not independent from each other. Because firms find it optimal to construct in the most
productive islands, dH̃ and dÃ tend to be positively correlated in the cross-section.

Note that Assumption (22) implies that all the material M is being used up for construction. Therefore,
the cross-sectional average housing stock must be constant and equal to H = M/δ, regardless of the wage
distribution. This implies that E(dH̃) = 0.

With the current preference specification, the function Φ(x) of equation (20) is Φ(x) = x/(2κ). Therefore,
the value Ū + dU of moving solves the equation

1
2κ

E
[(

H + dH̃
)

max
{

A + dÃ− U − dU, 0
}]

= 1, (48)

where the expectation is taken over the joint distribution of (dÃ, dH̃). Note that if dU is small, A− U > 0
implies that A + dÃ−U − dU > 0. Hence, all islands are populated, we can drop the maximum in equation
(48), and solve for dU :

1
2κ

E
[(

H + dH̃
) (

A + dÃ− U − dU
)]

= 1

⇔ 1
2κ

E
[
H

(
A− U + dÃ− dU

)
+ dH̃

(
A− U + dÃ− dU

)]
= 1

⇔ 1
2κ

{
H

(
A− U

)−HdU + E(dÃdH̃)
}

= 1

⇔ dU = E

[
dÃ

dH̃

H

]
,

where the last equality follows because 1/(2κ)H(A−U) = 1 by definition of U and because, by assumption,
E(dÃ) = E(dH̃) = 0. This equation shows that an increase in wage dispersion increases households’ value of
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moving, provided the housing stock and the wage are positively correlated. This arises in all of our calibrated
examples because firms find it optimal to construct housing in the most productive islands. Intuitively,
a positive correlation between the wage and the housing stock allows more households to work in more
productive islands, and increases their utility of moving.

We now turn to the impact of wage dispersion on the rent. The rent in an island with wage A + dÃ is

ρ(dÃ) =
1
4κ

(
A + dÃ− U − dU

)2

. (49)

Therefore, holding the wage A + dÃ fixed, an increase in wage dispersion lowers the rent. This is an outside
option effect: because the value U + dU of moving goes up, households are able to bid down the rent in their
island.

Equation (49) also reveals a convexity effect. Because the rent function is convex in dÃ, the rent increases
more in high- than in low-wage islands.46 This implies that the average rent across islands goes up. Convexity
also has an impact on the price of housing services in each island, because the future wage of an island is
random. Take the example of an independent and identically distributed wage process. That is, every period,
the wage in an island is an independent draw from the cross-sectional distribution. The house price in an
island with current wage A + dÃ is

P (dÃ) = ρ(dÃ) +
E

[
ρ(dÃ′)

]

1− β(1− δ)
, (50)

where the expectations is taken with respect to the cross-sectional distribution of wage. The convexity effect
means that an increase in wage dispersion increases the second term in the price equation (50).47

The outside option and the convexity effect have opposite impacts on the average rent. A second-order
approximation suggests that the convexity effect dominates: a small increase in wage dispersion increases
both the population-weighted average house price and its dispersion. Appendix B.2.3 combines equation (49)
with the fact that

n(dÃ, dH̃) =
1
2κ

(
H + dH̃

)(
A + dÃ− U − dU

)
,

to derive the following second-order approximation of the population weighted average rent across islands:

E
[
n(dÃ, dH̃)ρ(dÃ)

]
' κ

H
2 +

3
4κ

V (dÃ). (51)

The first term on the right-hand side is the rent when all islands are identical and the second term represents
the impact on the average rent of wage dispersion. This term is positive, meaning that the convexity effect
dominates the outside option effect. The more dispersed the wage, the larger the increase in the population-
weighted average rent across islands.

A similar second-order approximation shows that the population weighted variance of rents is equal

46Lemma 4 of Appendix A.1 shows that the function ρ(dÃ) is convex for all utility functions satisfying the
conditions of Section 2.1.

47If the wage process is persistent, then the same effect operates in the long run. Indeed, by ergodicity, the
distribution of the wage T periods ahead converges to the cross-sectional distribution as T goes to infinity.

45



to V (dÃ)/H
2
, meaning that the wage distribution lends its dispersion to the rent dispersion. Moreover,

increasing the aggregate supply H of housing services reduces dispersion. It brings the marginal utility κ/h2

in a less convex range, and reduces the impact on rents of cross-sectional variation in housing consumption.

B.2.3 Second-order Approximation

The population weighted rent solves

E
[
n(dÃ, dH̃)ρ(dÃ)

]
=

1
8κ2

E

[(
H + dH̃

)(
A− U + dÃ− dU

)3
]

' 1
8κ3

E

[(
H + dH̃

)(
(A− U)3 + 3(A− U)2

(
dÃ− dU

)
+ 3(A− U)

(
dÃ− dU

)2
)]

where we ignore the third-order term (dÃ − dU)3. Since dU = E(dÃdH̃/H) is of second order, it follows
that, to a second-order approximation, (dÃ − dU)2 ' dÃ2. Plugging this back into the last equation, using
the fact that E(dÃ) = E(dH̃) = 0, and neglecting all terms of order greater or equal than three, we obtain

E
[
n(dÃ, dH̃)ρ(A)

]
=

H

8κ2

{
(A− U)3 − 3(A− U)2dU + 3(A− U)E(dÃ2)

}
+

3
8κ2

(A− U)2E
[
dH̃dÃ

]

=
H

8κ2

(
(A− U)3 + 3(A− U)V (dÃ)

)

=
κ

H
2 +

3
4κ

V (dÃ),

where the second equality follows from the fact that HdU = E
[
dÃdH̃

]
, and the last equality follows from

substituting U = A− 2κ/H. In order to calculate the variance, we start with

E
[
n(dÃ, dH̃)ρ(dÃ)2

]
=

1
32κ3

E

[(
H + dH̃

)(
A− U + dÃ− dU

)5
]

=
1

32κ3
E

[(
H + dH̃

)(
A− U + dÃ− dU

)5
]

=
1

32κ3
E

[(
H + dH̃

)(
(A− U)5 + 5

(
A− U

)4
(
dÃ− dU

)
+ 10

(
A− U

)3
dÃ2

)]

where we use the identity (x + y)5 = x5 + 5x4y + 10x3y2 + 10x2y3 + 5xy4 + y5 and we neglect all terms of
order greater or equal than three. Using the fact that E(dÃ) = E(dH̃) = 0, we find

E
[
n(dÃ, dH̃)ρ(A)2

]
=

1
32κ3

{
H(A− U)5 − 5H(A− U)2dU + 10H(A− U)3V (A) + 5(A− U)4E(dÃdH̃)

}

=
1

32κ3

{
H(A− U)5 + 10H(A− U)3V (A)

}

=
κ2

H
4 +

5
2

V (dÃ)

H
2 ,
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where we use HdU = E(dÃdH̃) for the first equality, and A−U = 2κ/H for the second equality. The second
calculation is

E
[
n(dÃ, dH̃)ρ(dÃ)

]2

'
[

κ

H
2 +

3
4κ

V (dÃ)
]2

' H
2

κ2
+

3
2

V (dÃ)

H
2

neglecting again the term V (A)2 which is of order greater than 2. Combining the last two results leads to

E
[
n(dÃ, dH̃)ρ(dÃ)2

]
− E

[
n(dÃ, dH̃)ρ(dÃ)

]2

=
V (dÃ)

H
2 . (52)

B.3 Convergence

In this Appendix we characterize the long-run behavior of the competitive equilibrium. As one might expect,
when the wage process is stationary and the permit constraint is time invariant, then the economy converges
to a steady state:

Proposition 5 (Convergence). Under the assumptions of Proposition 3, and if i) the wage process is sta-
tionary and ii) the permit function Π(A) is time invariant. Then, there exists some value U∗ of moving and
some function m∗(A) such that Ut converges towards U∗ and mt−1(At) ≡ E(Ht−1 |At) converges uniformly
towards m∗(A), for any initial distribution of the housing stock.

Note that we only prove the convergence of the conditional moment function, mt−1(A), and not conver-
gence of the joint distribution of wage and housing stock. Convergence in distribution can be proved using
Theorem 2 of Hopenhayn and Prescott (1992), but under the additional assumption that the productivity
process is bounded, i.e. Amax < ∞. In our calibration, however, we find it convenient to assume that the
wage process is unbounded, which requires the results of Proposition 5.

In order to prove these results, we first take expectations conditional on At+1 on both sides of (3), we
find that, for all t ∈ {1, 2, . . .}:

mt(At+1) = E [Ht |At+1] = E
[
(1− δ)Ht−1 + Π(A)I{A≥A∗} |At+1

]
. (53)

An application of the Law of Iterated Expectations implies that

E [Ht−1 |At+1] = E [E [Ht−1 |At, At+1] |At] . (54)

Now note that Ht−1 is a function of At−1 and H0. Let us consider the density of (At−1,H0) conditional on
(At, At+1):

g(At−1,H0 |At+1, At) =
g(At+1,H0)
g(At+1, At)

=
g(At+1 |At,H0)g(AtH0)

g(At+1 At)g(At)

=
g(At+1 |At)g(At,H0)

g(At+1 At)g(At)
=

g(At,H0)
g(At)

= g(At−1,H0 |At),

where the first two equalities on the first line follow from an application of Bayes’ Rule, the first equality
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on the second line follows from the Markov property together with the assumption that, conditional on
At, H0 does not help predicting the future path of wage. The last two equalities follow from Bayes’ Rule.
Summarizing, we have

g(At−1,H0 |At+1, At) = g(At−1,H0 |At)

Plugging this back into (54) this implies that E [Ht−1 |At+1] = E [mt−1(At) |At+1] and, with (53), that

mt(At+1) = (1− δ)E [mt−1(At) |At+1] + E
[
Π(A)I{A≥A∗} |At+1

]
. (55)

Equation (55) defines a mapping on the space of bounded measurable functions. It is straightforward to
show that it satisfies the Blackwell sufficient conditions for a contraction mapping (Stokey and Lucas (1989)
Theorem 3.3). Since the space of bounded measurable functions is complete (Rudin (1986) Theorem 3.11)
an application of the Contraction Mapping Theorem (Stokey and Lucas (1989) Theorem 3.2) implies that it
has a unique fixed point m∗(A), and that the function mt(A) converges uniformly towards m∗(A).

Now consider the sequence {Ut}∞t=1 of maximum attainable utilities. At each time Ut is the unique
solution of

1 = Ft(U) =
∫

Ht(At,H0)Φ (max{At − U, 0}) dAt dH0

= E [HtΦ(max{At − U, 0})]
= E

[(
Ht−1 + Π(At)I{At≥A∗}

)
Φ(max{At − U, 0})]

= E
[(

mt−1(At) + Π(At)I{At≥A∗}
)
Φ(max{At − U, 0})] .

where the last equality follows from conditioning with respect to At and applying the Law of Iterated
Expectations. Define

F ∗(U) ≡ E
[(

m∗(At) + Π(At)I{At≥A∗}
)
Φ(max{At − U, 0})] . (56)

Because mt(A) converges uniformly towards m∗(A), an application of the Dominated Convergence Theorem
(Stokey and Lucas (1989) Theorem 7.10) shows that Ft(U) converge point-wise towards F ∗(U). Moreover,
by the same argument as in the Proof of Proposition 3, F ∗(U) is continuous.

Now, stationarity implies that gt(A) = g0(A) which in the Proof of Proposition 3 implies that the upper
bound U t is independent of time and therefore that Ut is a bounded sequence. Therefore, the sequence
{Ut}∞t=1 has at least one accumulation point U∗. Letting {Utk

}∞k=1 be a subsequence of (Ut) converging
towards U∗, we have

|F ∗(U∗)− Ftk
(Utk

)| ≤ |F ∗(U∗)− Ftk
(U∗)|+ |Ftk

(U∗)− Ftk
(Utk

)|
≤ |F ∗(U∗)− Ftk

(U∗)|+ K|G(U∗)−G(Utk
)|,

where K is an upper bound on an island housing stock, and G(U) is the function defined in point (v)
of Lemma 4. Since Utk

converges to U∗ and Ft(U) converges point-wise towards F ∗(U), it follows that
F ∗(U∗)− Ftk

(Utk
) converges to zero. Because Ft(Ut) = 1, this means that F ∗(U∗) = 1. Lastly, since F ∗(U)

is strictly decreasing whenever F ∗(U) > 0, there is a unique U∗ such that F ∗(U∗) = 1. This proves that
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sequence {Ut}∞t=1 has a unique accumulation point, and is therefore convergent.

B.4 Moving Cost

In this appendix we provide an extension of our model with moving costs. We focus on a simple two-wage
example with fixed housing supplies that can be solved by hand, and provide comparative statics with respect
to the dispersion of wage. The main results are as follows: if the moving cost is very large, then households do
not move. Since the rent in an island is pinned down by the local housing supply and a local population that
stays fixed, it does not respond to change in wage dispersion. However, if the moving cost is small enough
so that there is labor mobility in a steady state equilibrium, then the convexity effect is mitigated, but not
overturned: a mean-preserving increase in the spread of the wage distribution still increases the average home
price in the economy.

The wage is taken to be some i.i.d binomial process: namely, in every period and in every island, the
wage can either be high, AH , with probability πH , or low, AL, with probability πL. A household can move
across islands at cost c > 0. In order to make sure that, in a steady-state equilibrium, households find it
optimal to move across islands, we assume that

c < AH −AL. (57)

For simplicity, we abstract from construction decisions by assuming that the housing stock is fixed in every
island, and equal to some H > 0. We now guess and verify that there exists an equilibrium in which all
islands in the low-wage state have population nL and all islands in the high-state have population nH > nL.
The present values VL and VH of living in a low- or high-wage island in a given period solve the Bellman
equations:

VL = AL + v (hL)− hLv′ (hL) + β (πHVH + πLVL)

VH = AH + v (hH)− hHv′ (hH) + β (πHVH + πLVL) ,

where hL = H/nL and hH = H/nH , respectively. Migration dynamics are thus as follows: if last period
population is nH and the current wage is AL, then households pay the fixed cost to move to some high-wage
island until they are indifferent between moving or not. That is, until the value VL of staying is equal to the
value VH − c of moving and paying the fixed cost:

VL = VH − c.

Plugging this back into the above Bellman equations, we find the modified indifference conditions:

AL + v (hL)− hLv′ (hL) = U − c (58)

AH + v (hH)− hHv′ (hH) = U, (59)

for some flow value U of living in a high-wage island. Using the functional form v(h) = −κ/h of our
calibration, and keeping in mind that hL = H/nL and hH = H/nH , we can solve these equations for nL and
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nH :

nL =
H

2κ
(AL − U + c)

nH =
H

2κ
(AH − U) .

In particular nH − nL = H/(2κ) (AH −AL − c) is decreasing in c, meaning that the moving cost reduces
the dispersion of the population across islands. Note that nH > nL if and only if condition (57) is satisfied.
Lastly, the value U is determined by the condition that the total population is one, πLnL + πHnH = 1. This
gives U = −2κ/H + A + πLc, where A ≡ πLAL + πHAH . Therefore, population is

nL = 1 +
H

2κ

(
AL −A + πHc

)

nH = 1 +
H

2κ

(
AH −A− πLc

)
.

The rents ρL and ρH in the low and high state are:

ρL = κ

(
nL

H

)2

=
κ

H
2 +

1
H

[
AL −A + πHc

]
+

1
4κ

[
AL −A + πHc

]2

ρH = κ

(
nH

H

)2

=
κ

H
2 +

1
H

[
AH −A− πLc

]
+

1
4κ

[
AH −A− πLc

]2
.

And the average rent across islands is

ρ̄ = πLρL + πHρH

=
κ

H
2 +

1
4κ

[
πH(AH −A)2 + πL(AL −A)2

]− πLπH

2κ
c [AH −AL] +

πLπH

4κ
c2.

To study the impact of dispersion on wage, let AL = A−∆/(2πL) and AH = A + ∆/(2πH), for some ∆ > 0.
It is straightforward to verify that an increase in ∆ creates a mean-preserving increase in the spread of the
wage distribution. Plugging these expression into the average wage equation, we find

ρ̄ =
κ

H
2 +

1
16κπHπL

∆2 − c

4κ
∆ +

πLπH

4κ
c2. (60)

The third term −c/(4κ)∆ implies that the moving cost c mitigates the impact of increasing dispersion.
Intuitively, increasing c reduces the population dispersion across islands, implying in particular that rents
don’t increase that much in the high-wage state. Nevertheless, we have

∂ρ̄

∂∆
=

∆
8κπHπL

− c

4κ
> 0, (61)

because of condition (57). Therefore, in this example, increasing wage dispersion increases the steady state
average rent.
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B.5 Quantitative Results: Robustness Analysis

This appendix discusses how the results change when we consider alternative ways of increasing wage disper-
sion and different degrees of regulatory tightening. Table 1 summarizes all results.

B.5.1 Two Alternative Ways to Increase Wage Dispersion

We revisit section 4.1 and consider two alternative ways of generating the same increase in the wage dispersion
between 1975 and 2004.

First, instead of assuming that the variance of log wages σ2
at stays constant after 2004, we consider a

constant innovation variance σ2
εt. That is, σεt stays constant after 2004 at its 2004 value of .0486. This implies

that σa shows the exact same increase until 2004 as in the benchmark case, but keeps increasing from .220 to
its new steady state level of .345. By the same token, the population-weighted c.v. of A further increases to
a new steady state value of .242. For comparison, in our benchmark case, the c.v. of A declined to a steady
state value of .156 instead (see Figure 6). The left column of Panel 1 in Table 1 summarizes the results.
Output increases by the same amount until 2004, but it increases an additional 31% afterwards, instead of
3.5% in the benchmark. The population keeps spreading out as the construction cutoff A∗t increases beyond
2004. This further concentrates the population in the highest wage quintile (88.8% in the final steady state).
Because of the continued increase in the wage dispersion, which is reflected in house prices, both average
house prices and their standard deviation increase much more than in the benchmark: 128% versus 48% for
the mean and 215% versus 98% for the standard deviation. The c.v. of house prices increases further from
.79 after 2004 periods to 1.13 in the final steady state. Finally, the HP/CC also goes up by much more:
115% versus 55%. While the results are qualitatively the same, the increase in wage dispersion may be more
potent for both output and house prices than the benchmark scenario let believe.

We explore a second alternative in which the increase in σat is entirely driven by an increase in persistence
instead of an increase in the innovation variance. In particular, we keep σεt constant at .0173 and increase
ρa from 0.99 to 0.9975. The variance of σat increases to 0.245 by period 2004 and stays constant thereafter,
consistent with its evolution in the benchmark case. The population-weighted c.v. of wage increases from
.0967 in the initial steady state to .1347 in period 2004 and further to .1587 in the final steady state. The
beginning and ending point are the same as in our benchmark case, but wage dispersion has increased by
much less after 30 periods. The right column of Table 1, Panel 1 shows that the total effects are larger, but
the changes in the first 30 periods are muted. For example, output increases by only 6% (instead of 13%)
until 2004, but increases 25% in total (instead of 16.8%). House prices increase 13% initially (50%) but 55%
between steady states (48%). The final c.v. of house prices is 0.96 instead of 0.77.

B.5.2 Alternative Changes in Housing Supply Regulation

The parameter φ, which governs the tightening in housing supply regulation in section 4.2, is somewhat of a
free parameter. We set φ = −.5 in our baseline case, and explore a lower and a higher value here.

The left column of Panel 2, Table 1 reports the moments for φ = −.7 and the right column of the same
panel considers φ = −.3. All effects are monotonic in φ, but even for φ = −.7 we find small house price
effects of regulation. We have considered even more extreme parameter values for φ, we have experimented
with lowering the intercept πa instead, or in combination with a decline in φ, and have solved the model
under alternative assumptions on housing supply regulation post-2004. In all cases did we find small house
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Table 1: Summary Statistics of Model: Changes Relative to 1975 Steady State

The first panel reports the effect of an increase in wage dispersion. The increase is achieved in one of three ways: through an
increase in σε and σa is assumed to stay constant after 2004 (middle column, benchmark case); through an increase in σε and
σε is assumed to stay constant after 2004 (left column); and through an increase in persistence ρa (right column). The second
panel reports the effect of an increase in housing supply regulation. The parameter φ decreases from 0 in 1975 to one of the
following three values in 2004: φ = −.5 (middle column, benchmark case); φ = −.7 (left column); and φ = −.3 (right column).
The third and fourth panels report an increase in both regulation and wage dispersion. In the third panel, the increase in wage
dispersion is achieved in the same way across columns: through an increase in σε and σa is assumed to stay constant after
2004. In the fourth panel, the increase in regulation is the same across columns: φ declines from 0 to -.5. Each entry reports
the changes between either the situation at period 30 and the initial steady state (columns “2004”) or between the final steady
state and the initial steady state (columns “ss”). In all panels, rows 1 and 3-6 report the log difference multiplied by 100; row
2 reports a simple difference multiplied by 100.

Panel 1 - Increasing Productivity Dispersion (φ = 0)

Experiment: σε ↑, σ̄ε Benchmark : σε ↑, σ̄a ρa ↑
Moment ss 2004 ss 2004 ss 2004

Output 44.21 13.00 16.82 13.29 24.78 5.96

Pop. in Q5 24.27 0.45 11.04 1.12 23.69 -20.64

Mean HP 128.03 55.81 47.86 50.13 54.88 13.02

Std HP 215.41 107.19 98.08 104.40 126.29 68.69

Mean HP/CC 155.55 31.11 55.24 35.33 127.00 -9.65

Panel 2 - Increasing Regulation (σa →)

Experiment: πb = −.7 Benchmark : πb = −.5 πb = −.3

Moment ss 2004 ss 2004 ss 2004

Output -3.65 -1.23 -2.56 -0.88 -1.51 -0.53

Pop. in Q5 -17.21 -7.04 -12.27 -5.13 -7.23 -3.09

Mean HP 0.52 2.84 0.22 1.85 0.05 1.01

Std HP 0.64 2.15 0.14 1.20 -0.09 0.52

Mean HP/CC 18.02 31.69 12.05 21.33 6.83 12.14

Panel 3 - Increasing Both at the Same Time (σε ↑, σ̄a)

Experiment: πb = −.7 Benchmark : πb = −.5 πb = −.3

Moment ss 2004 ss 2004 ss 2004

Output 9.03 10.67 11.26 11.38 13.50 12.12

Pop. in Q5 -9.49 -6.07 -3.65 -4.17 2.39 -2.10

Mean HP 45.03 52.68 45.53 51.59 46.25 50.79

Std HP 96.24 106.14 96.46 105.30 96.93 104.72

Mean HP/CC 88.54 96.78 77.34 76.63 67.77 58.79

Panel 4 - Increasing Both at the Same Time (πb = −.5)

Experiment: σε ↑, σ̄ε Benchmark : σε ↑, σ̄a ρa ↑
Moment ss 2004 ss 2004 ss 2004

Output 33.85 11.37 11.26 11.38 17.02 3.85

Pop. in Q5 7.86 -4.19 -3.65 -4.17 3.74 -28.37

Mean HP 120.62 57.96 45.53 51.59 52.94 12.27

Std HP 207.24 108.22 96.46 105.30 124.32 57.45

Mean HP/CC 187.50 70.63 77.34 76.63 146.39 43.98
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Table 2: Welfare Costs of Housing Supply Regulation

Experiment: φ = −.7 Benchmark : φ = −.5 φ = −.3

ss 2004 ss 2004 ss 2004

σε ↑, σ̄ε -1.52 -0.22 -1.03 -0.08 -0.56 -0.02

Benchmark : σε ↑, σ̄a -1.49 -0.48 -1.06 -0.33 -0.64 -0.19

ρa ↑ -1.74 -0.41 -1.24 -0.27 -0.75 -0.15

price effects for the simple reason that labor reallocates away from regulated metropolitan areas and this
equilibrium decline in demand largely undoes the price effects of the decline in supply brought about by
tighter regulation.

In sum, tightening regulation quantitatively fails to produce the observed increase in house prices, the
observed increase in house price dispersion and the increase in population concentration. It does generate a
non-trivial increase in the house price to construction cost ratio, a measure of the part of house prices due
to regulation.

B.5.3 Combining Both Effects

The last two panels of Table 1 consider a simultaneous increase in regulation and in wage dispersion. In Panel
3, the increase in wage dispersion is engineered in identical fashion across columns and different regulatory
changes are considered, while Panel 4 compares alternative wage dispersion channels holding the regulatory
change fixed across columns. By construction, the middle column in both panels is the same. This is the
benchmark case discussed in the main text. We note that the deviations of house prices from the benchmark
case are much more pronounced in Panel 4 than in Panel 3. Consistent with previous findings, the size of the
regulatory change seems inconsequential for housing prices (Panel 3). The way in which the wage dispersion
comes about, however, makes a big difference for house prices (Panel 4). Final steady state house price levels
and their dispersion are higher in both the left and the right column, compared to the benchmark case.

Finally, we isolate the effects of housing supply regulation for output and welfare. We do this by sub-
tracting the numbers in Panel 3 from the numbers in the middle column of Panel 1. Naturally, output losses
depend on exactly how much tighter regulation became: the steady state output loss is 3.3% when φ = −.3
(16.8-13.5) and 7.8% when φ = −.7 (16.8-9.0). Fewer households work in the most productive regions and
this decline in allocative efficiency leads to the output loss.

Table 2 reports the ex-ante welfare costs described in the main text. We recall that it measures the
1975 present discounted value of welfare flows lost because of tighter regulation. The discounted sum runs
from 1975 until either 2004 or until the final steady-state. Its nine cases which arise from three different
levels of regulatory increase (φ = −.7, φ = −.5, and φ = −.3) and three different assumptions on how the
increase in wage dispersion came about. The welfare costs of housing supply regulation, measured until 2004
are between 0.02% and 0.48% per year. When measured until the final steady state, the annual losses are
between 0.56% and 1.74%.
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C Computations

In this Appendix we describes how to compute an equilibrium.

C.1 Functional and Distributional Assumptions

We assume that the idiosyncratic wage process is lognormal. Namely, At = eat where at follows the autore-
gression

at = (1− ρt)µt + ρtat−1 + σεtεt,

for some deterministic sequences {µt, ρt, σεt}∞t=1, and some sequence {εt}∞t=1 of independent standard normal
variables. The initial log wage a0 is taken to be normally distributed with mean µ0 and variance σ2

0 . By the
Law of Large Numbers, the cross-sectional distribution of log wage at any date is normally distributed with
a mean E(at) and variance V (at) solving the first-order difference equations

E(at) = (1− ρt)µt + ρtE(at−1)

V (at) = ρ2
t V (at−1) + σ2

εt.

For the rest of this appendix, we write all functions in terms of log wage at instead of At. We also assume that
the utility function v(h) for housing services is v(h) = −κ/h. This implies that w(h) ≡ hv′(h)−v(h) = (2κ)/h

and Φ(h) = h/(2κ).

C.2 The Recursive Procedure

We solve for an equilibrium recursively in 4 steps that we describe in details below.

1. On solves first for the sequence {a∗t }∞t=1 of construction cutoffs.

2. Given the construction cutoffs, one solves for the function mt−1(at) = E
(
Ht−1(at−1,H0) | at

)
.

3. Given the function mt−1(at), one solves for the sequence {Ut}∞t=1 of moving values.

4. Given the sequence of moving values, one solves for prices.

C.2.1 Step 1: Construction Cutoffs

Let f(a; µ, σ2) denote the probability distribution function of a normal random variable with mean µ and
variance σ2. Then, we find the construction cutoff A∗t ≡ ea∗t at time t ∈ {1, 2, . . .} by solving

∫ ∞

a∗t

Π(a)f (a; E(at), V (at)) da = M.
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C.2.2 Step 2: the Function mt−1(at)

The function mt−1(at) solves the first-order stochastic difference equation:

mt−1(at) = E
(
Ht−1(at−1,H0) | at

)

= E
(
(1− δ)Ht−2(at−2,H0) + Πt−1(eat−1)I{at−1≥a∗t−1} | at

)
(62)

= (1− δ)E
(
E

[
Ht−2(at−2,H0) | at, at−1

] | at

)
+ E

(
Πt−1(at−1)I{at−1≥a∗t−1} | at

)
(63)

= E
([

Ht−2(at−2,H0) | at−1

] | at

)
+ E

(
Πt−1(eat−1)I{at−1≥a∗t−1} | at

)
(64)

= (1− δ)E (mt−2(at−1) | at) + E
(
Πt(eat−1)I{at−1≥a∗t−1} | at

)
(65)

where the first equality (62) follows from the law of motion of Ht(at, H0) and the second equality (63) follows
from the Law of Iterated Expectations. The third equality (64) is more delicate and follows by an application
of Bayes’ Rule:

g
(
at−2,H0 | at, at−1

)
=

g(at,H0)
g(at, at−1)

=
g(at | at−1,H0)g(at−1, H0)

g(at | at−1)g(at−1)

=
g(at | at−1)g(at−1,H0)

g(at | at−1)g(at−1)
(66)

=
g(at−1,H0)

g(at−1)
= g(at−2,H0 | at−1).

where (66) follows from the Markov property together with the assumption that, conditional on at, H0 does
not help predicting future wage.

Given an initial condition m−1(a0), recursion (65) allows us to approximate the sequence {mt−1(at)}∞t=1

of functions. We use numerical integration and we approximate the functions mt−1(at) by linear interpolation
(see Judd (1998) Chapter 7) with a grid of 100 points over an interval [amin

t , amax
t ], with

amin
t = E(at)− 7

√
V (at)

amax
t = E(at) + 7

√
V (at).

This means that, at each time, the wage draw falls in the interval [amin
t , amax

t ] with a probability of about
1− 10−11.

C.2.3 Step 3: the Moving Values

The moving value Ut solves
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∫
Ht(at, H0)max

{
eat − Ut

2κ
, 0

}
g(at,H0) datdH0 = 0

⇔ E

[
Ht(at,H0)max

{
at − Ut

2κ
, 0

}]
= 0

⇔ E

[
E

(
Ht(at, H0)max

{
eat − Ut

2κ
, 0

} ∣∣∣∣ at

)]
= 0

⇔ E

[
E

(
Ht(at,H0) | at

)
max

{
at − Ut

2κ
, 0

}]
= 0

⇔ E

[(
(1− δ)mt−1(at) + Π(at)I{at≥a∗t }

)
max

{
eat − Ut

2κ
, 0

}]
= 0

⇔
∫ +∞

−∞

(
(1− δ)mt−1(a) + Π(a)I{a≥a∗t }

)
max

{
ea − Ut

2κ
, 0

}
f(a; E(at), V (at)) da = 0. (67)

Given our approximation of the function mt−1(at), for any Ut we can calculate the integral on the left-hand
side of (67), and solve numerically this one-equation-in-one-unknown problem.

C.2.4 Calculating other equilibrium objects

The first paragraph explains how we calculate the rent, the distribution of households, and welfare. The
second paragraph focuses on the calculation of house prices.

Rent, distribution of households, and welfare. The rent at time t in an island with current
wage at is given by

ρt(at, Ut) ≡ v′ ◦ w−1 (max {eat − Ut, 0}) =
1
4κ

(max {eat − Ut, 0})2 .

The population distribution is given by (19):

nt(at, Ut) = Ht(at,H0)Φ (max {eat − Ut, 0}) =
Ht(at,H0)

2κ
max {eat − Ut, 0} .

We do not calculate the distribution Ht(at,H0) of housing stocks but only the conditional moment mt−1(at) =
E

[
Ht−1(at−1, H0) | at

]
. The function mt−1(at) is very useful to calculate population-weighted moments of
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any function K(at) of the current wage, as follows:

∫
nt(at,H0)K(at)gt(at,H0) datdH0 = E

[
nt(at,H0)K(at)

]

= E

[
Ht(at,H0)max

{
eat − Ut

2κ
, 0

}
K(at)

]
= E

[
E

(
Ht(at,H0)max

{
eat − Ut

2κ
, 0

}
K(at)

∣∣∣∣ at

)]

= E

[
E

(
Ht(at, H0)

∣∣ at

)
max

{
eat − Ut

2κ
, 0

}
K(at)

]

= E

[(
(1− δ)mt−1(at) + Π(at)I{at≥a∗t }

)
max

{
eat − Ut

2κ
, 0

}
K(at)

]

=
∫ +∞

−∞

(
(1− δ)mt−1(a) + Π(a)I{a≥a∗t }

)
max

{
ea − Ut

2κ
, 0

}
K(a)f(a; E(at), V (at)) da. (68)

Formula (68) allows to calculate a number of equilibrium objects:

1. The measure of households in island with current wage less than a′ at time t is calculated using the
formula with

K(a) = I{a≤a′}.

2. The population weighted average rent is calculated using the formula with

K(a) = 1/(4κ) (max {ea − Ut, 0})2 .

3. The population weighted average square rent is calculated using the formula with

K(a) = 1/(4κ)2 (max {ea − Ut, 0})4 .

4. The population weighted dispersion of rents follows immediately from the above first and second
population weighted moments.

5. The flow welfare, defined as the equally weighted sum of time t utilities is calculated using the formula
with

K(a) = ea + v(h) = ea − 1/2max{ea − Ut, 0}.

Prices. We now explain our calculation of the price Pt(at) of housing services in an island with current
wage at. Given some sequence {Ut}∞t=1 of moving values, the price is

Pt(at) = E



∞∑

j=0

βj(1− δ)j 1
4κ

(max{eat+j − Ut+j , 0})2
∣∣∣∣ at


 =

1
4κ

∞∑

j≥0

(
Mt+j(2)− 2Ut+jMt+j(1) + U2

t+jMt+j(0)
)
.

where, for any k ∈ {0, 1, 2, . . .},

Mt+j(k) ≡ E

[
ekat+j I{eat+j≥Ut+j}

∣∣∣∣ at

]
(69)
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Since at is normally distributed, the moment (69) is known in closed form. Indeed,

∫ ∞

log(A)

exp (ka) f(a; µ, σ2) da =
∫ ∞

log(A)

exp
(

ka− (a− µ)2

2σ2

)
da√
2πσ2

=
∫ ∞

log(A)

exp
(
−a2 − 2µa + µ2 − 2kaσ2

2σ2

)
da√
2πσ2

=
∫ ∞

log(A)

exp

(
−

(
a− (

µ + kσ2
))2 − (µ + kσ2)2 + µ2

2σ2

)
da√
2πσ2

= ekµ+ k2σ2
2

[
1− F

(
log(A)− (µ + kσ2)

σ

)]

≡ M(k, log(A), µ, σ2).

where F (A) is the cumulative distribution function of a standard normal random variable. Therefore, in
order to calculate (69) we only need to calculate the conditional mean and variance of at+j given at. These
solves the following first-order difference equations:

E(at+j | at) = (1− ρt+j)µt+j + ρt+jE(at+j−1 | at) (70)

V (at+j | at) = ρ2
t+jV (at+j−1 | at) + σ2

εt+j , (71)

for j ∈ {1, 2, . . .} with the initial condition E(at | at) = at and V (at | at) = 0. These calculations provide the
following procedure for computing the price of housing services in an island with current wage at.

1. Pick some large integer J and some initial wage at.

2. Calculate the conditional means E [at+j | at] and variances V [at+j | at] using (70) and (71), for j ∈
{1, 2, . . . , J}.

3. Calculate the price using the formula

P (at) =
1
4κ

(max{ea − Ut, 0})2

+
1
4κ

J∑

j=1

βj(1− δ)j

(
M (2, log(Ut), E(at+j | at), V (at+j |at))

−2Ut+j ×M (1, log(Ut), E(at+j | at), V (at+j |at))

+U2
t+j ×M (0, log(Ut), E(at+j | at))

)
.

We approximate the price function P (at) using linear interpolation. Since the price only depends on the
current wage, we can calculate population weighted moments using the usual formula.
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